Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials

DC ElementWertSprache
dc.contributor.authorBirkholz, Oliver
dc.contributor.authorBurns, Jonathan R.
dc.contributor.authorRichter, Christian P.
dc.contributor.authorPsathaki, Olympia E.
dc.contributor.authorHoworka, Stefan
dc.contributor.authorPiehler, Jacob
dc.date.accessioned2021-12-23T16:12:17Z-
dc.date.available2021-12-23T16:12:17Z-
dc.date.issued2018
dc.identifier.issn20411723
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/10138-
dc.description.abstractSynthetically replicating key biological processes requires the ability to puncture lipid bilayer membranes and to remodel their shape. Recently developed artificial DNA nanopores are one possible synthetic route due to their ease of fabrication. However, an unresolved fundamental question is how DNA nanopores bind to and dynamically interact with lipid bilayers. Here we use single-molecule fluorescence microscopy to establish that DNA nanopores carrying cholesterol anchors insert via a two-step mechanism into membranes. Nanopores are furthermore shown to locally cluster and remodel membranes into nanoscale protrusions. Most strikingly, the DNA pores can function as cytoskeletal components by stabilizing autonomously formed lipid nanotubes. The combination of membrane puncturing and remodeling activity can be attributed to the DNA pores' tunable transition between two orientations to either span or co-align with the lipid bilayer. This insight is expected to catalyze the development of future functional nanodevices relevant in synthetic biology and nanobiotechnology.
dc.description.sponsorshipDeutsche ForschungsgemeinschaftGerman Research Foundation (DFG) [SFB 944]; UK EPSRCUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [EP/N009282/1]; BBSRCUK Research & Innovation (UKRI)Biotechnology and Biological Sciences Research Council (BBSRC) [BB/M025373/1, BB/N017331/1]; We thank Rainer Kurre for support with single-molecule fluorescence microscopy and Adrian Hodel for generating the images for the molecular models of DNA pores and membranes. This project was supported by the SFB 944 (P8 and Z) from the Deutsche Forschungsgemeinschaft (to J.P.) and by UK EPSRC grant EP/N009282/1, and BBSRC grants BB/M025373/1 and BB/N017331/1 (to S.H.).
dc.language.isoen
dc.publisherNATURE PUBLISHING GROUP
dc.relation.ispartofNATURE COMMUNICATIONS
dc.subjectCURVATURE
dc.subjectDIFFUSION
dc.subjectDYNAMICS
dc.subjectLOCALIZATION
dc.subjectMultidisciplinary Sciences
dc.subjectNANOPORES
dc.subjectNANOTUBES
dc.subjectORGANIZATION
dc.subjectPROTEIN-PROTEIN INTERACTIONS
dc.subjectScience & Technology - Other Topics
dc.subjectTRACKING
dc.subjectTRANSPORT
dc.titleMulti-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials
dc.typejournal article
dc.identifier.doi10.1038/s41467-018-02905-w
dc.identifier.isiISI:000430286500002
dc.description.volume9
dc.contributor.orcid0000-0002-6527-2846
dc.contributor.orcid0000-0001-6551-3219
dc.publisher.placeMACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
dcterms.isPartOf.abbreviationNat. Commun.
dcterms.oaStatusGreen Published, gold
crisitem.author.deptFB 05 - Biologie/Chemie-
crisitem.author.deptidfb05-
crisitem.author.orcid0000-0002-2143-2270-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.netidPiJa938-
Zur Kurzanzeige

Google ScholarTM

Prüfen

Altmetric