AN UN-DELOOPED VERSION OF ALGEBRAIC K-THEORY

Autor(en): GUNNARSSON, T
SCHWANZL, R
VOGT, RM
WALDHAUSEN, F
Stichwörter: Mathematics; Mathematics, Applied; SPACES
Erscheinungsdatum: 1992
Herausgeber: ELSEVIER SCIENCE BV
Journal: JOURNAL OF PURE AND APPLIED ALGEBRA
Volumen: 79
Ausgabe: 3
Startseite: 255
Seitenende: 270
Zusammenfassung: 
Problems working with the Segal operations in algebraic K-theory of spaces-constructed by F. Waldhausen (1982)-arose from the absence of a nice groupcompletion on the category level. H. Grayson and D. Gillet (1987) introduced a combinatorial model G. for K-theory of exact categories. For dealing with K-theory of spaces we need an extension wG. of their result to the context of categories with cofibrations and weak equivalences. Our main result is that in the presence of a suspension functor-as in the case of retractive spaces-the wG. construction on the category of prespectra is an un-delooped version of the K-theory of the original category. In a sequel to this paper we show that Grayson's formula (1988) for Segal operations works as intended.
ISSN: 00224049
DOI: 10.1016/0022-4049(92)90053-I

Show full item record

Page view(s)

1
Last Week
0
Last month
0
checked on Mar 2, 2024

Google ScholarTM

Check

Altmetric