On the convergence to stationarity of the many-server Poisson queue

Autor(en): Stadje, W 
Parthasarathy, PR
Stichwörter: M/M/1 QUEUE; many-server Poisson queue; Mathematics; PERFORMANCE-MEASURES; speed of convergence; stationarity; Statistics & Probability; transient probabilities; TRANSIENT SOLUTION
Erscheinungsdatum: 1999
Herausgeber: APPLIED PROBABILITY TRUST
Journal: JOURNAL OF APPLIED PROBABILITY
Volumen: 36
Ausgabe: 2
Startseite: 546
Seitenende: 557
Zusammenfassung: 
We consider the many-server Poisson queue M/M/c with arrival intensity lambda, mean service time 1 and lambda/c < 1. Let X(t) be the number of customers in the system at time t and assume that the system is initially empty. Then p(n)(t) = P(X(t) = n) converges to the stationary probability pi(n) = P(X = n). The integrals integral(0)(infinity)[E(X) - E(X(t))] dt and integral(0)(infinity)[P(X less than or equal to n) - P(X(t) less than or equal to n)] dt are a measure of the speed of convergence towards stationarity. We express these integrals in terms of lambda and c.
ISSN: 00219002
DOI: 10.1017/S0021900200017307

Show full item record

Page view(s)

1
Last Week
0
Last month
0
checked on Feb 27, 2024

Google ScholarTM

Check

Altmetric