Dynamical stabilization of an unstable equilibrium in chemical and biological systems

Autor(en): Malchow, H 
Petrovskii, SV
Stichwörter: BEHAVIOR; BROWNIAN PARTICLES; CHAOS; Computer Science; Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering; EQUATIONS; Gray-Scott model; Mathematics; Mathematics, Applied; MODEL; PATTERN-FORMATION; predator-prey model; PREY-PREDATOR SYSTEM; reaction-diffusion systems; WAKES; WAVE; wave propagation
Erscheinungsdatum: 2002
Herausgeber: PERGAMON-ELSEVIER SCIENCE LTD
Journal: MATHEMATICAL AND COMPUTER MODELLING
Volumen: 36
Ausgabe: 3
Startseite: 307
Seitenende: 319
Zusammenfassung: 
The dynamics of two-component diffusion-reaction systems is considered. Using wellknown models from population dynamics and chemical physics, it is shown that for certain parameter values the systems exhibit a rather unusual behaviour: a locally unstable equilibrium may become stable during a certain transition process. Both the analytical and numerical investigations of this phenomenon are presented in one and two spatial dimensions. (C) 2002 Elsevier Science Ltd. All rights reserved.
ISSN: 08957177
DOI: 10.1016/S0895-7177(02)00127-9

Show full item record

Page view(s)

3
Last Week
0
Last month
1
checked on Mar 1, 2024

Google ScholarTM

Check

Altmetric