MOTIVIC ZETA FUNCTIONS FOR CURVE SINGULARITIES

Autor(en): Moyano-Fernandez, J. J.
Zuniga-Galindo, W. A.
Stichwörter: Mathematics; SEMIGROUP; SYMMETRY
Erscheinungsdatum: 2010
Herausgeber: CAMBRIDGE UNIV PRESS
Journal: NAGOYA MATHEMATICAL JOURNAL
Volumen: 198
Startseite: 47
Seitenende: 75
Zusammenfassung: 
Let X be a complete, geometrically irreducible, singular, algebraic curve defined over a field of characteristic p big enough. Given a local ring O-P,O-X at a rational singular point P of X, we attached a universal zeta function which is a rational function and admits a functional equation if O-P,O-X is Gorenstein. This universal zeta function specializes to other known zeta functions and Poincare series attached to singular points of algebraic curves. In particular, for the local ring attached to a complex analytic function in two variables, our universal zeta function specializes to the generalized Poincare series introduced by Campillo, Delgado, and Gusein-Zade.
ISSN: 00277630
DOI: 10.1215/00277630-2009-007

Show full item record

Page view(s)

1
Last Week
0
Last month
0
checked on Mar 3, 2024

Google ScholarTM

Check

Altmetric