ON CANONICAL MODULES OF TORIC FACE RINGS

DC FieldValueLanguage
dc.contributor.authorIchim, Bogdan
dc.contributor.authorRoemer, Tim
dc.date.accessioned2021-12-23T16:13:47Z-
dc.date.available2021-12-23T16:13:47Z-
dc.date.issued2009
dc.identifier.issn00277630
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/10752-
dc.description.abstractGeneralizing the concepts of Stanley-Reisner and affine monoid algebras, one can associate to a rational pointed fan Sigma in R-n the Z(d)-graded toric face ring K[Sigma]. Assuming that K[Sigma] is Cohen-Macaulay, the main result of this paper is to characterize the situation when its canonical module is isomorphic to a Z(d)-graded ideal of K[Sigma]. From this, result several algebraic and combinatorial consequences axe deduced. As an application, we give a relation between the cleanness of K[Sigma] and the shellability of Sigma.
dc.language.isoen
dc.publisherDUKE UNIV PRESS
dc.relation.ispartofNAGOYA MATHEMATICAL JOURNAL
dc.subjectCOHEN-MACAULAY QUOTIENTS
dc.subjectMathematics
dc.subjectPOSETS
dc.subjectSHELLABLE NONPURE COMPLEXES
dc.titleON CANONICAL MODULES OF TORIC FACE RINGS
dc.typejournal article
dc.identifier.doi10.1017/S0027763000009636
dc.identifier.isiISI:000267574500003
dc.description.volume194
dc.description.startpage69
dc.description.endpage90
dc.contributor.orcid0000-0002-5068-4557
dc.contributor.researcheridB-8283-2011
dc.identifier.eissn21526842
dc.publisher.place905 W MAIN ST, STE 18-B, DURHAM, NC 27701 USA
dcterms.isPartOf.abbreviationNagoya Math. J.
dcterms.oaStatusBronze, Green Submitted
crisitem.author.deptFB 06 - Mathematik/Informatik-
crisitem.author.deptidfb06-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.netidRoTi119-
Show simple item record

Page view(s)

2
Last Week
0
Last month
0
checked on Apr 23, 2024

Google ScholarTM

Check

Altmetric