BLOW-UP OF STRAIGHTENING-CLOSED IDEALS IN ORDINAL HODGE ALGEBRAS

Autor(en): BRUNS, W 
SIMIS, A
TRUNG, NV
Stichwörter: ARITHMETICAL RANK; ASSOCIATED GRADED RING; COHEN-MACAULAY; DIVISOR CLASS GROUP; FILTRATION OF POWERS; GENERIC MATRIX; GORENSTEIN; Mathematics; NORMAL; ORDINAL HODGE ALGEBRAS; RANK; REES ALGEBRA; STANDARD MONOMIAL; STRAIGHTENING-CLOSED IDEAL; VIRTUAL MAXIMAL MINOR
Erscheinungsdatum: 1991
Herausgeber: AMER MATHEMATICAL SOC
Journal: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
Volumen: 326
Ausgabe: 2
Startseite: 507
Seitenende: 528
Zusammenfassung: 
We study a class of ideals I in graded ordinal Hodge algebras A. These ideals are distinguished by the fact that their powers have a canonical standard basis. This leads to Hodge algebra structures on the Rees ring and the associated graded ring. Furthermore, from a natural standard filtration one obtains a depth bound for A/I(n) which, under certain conditions, is sharp for n large. Frequently one observes that I(n) = I(n). Under suitable hypotheses it is possible to calculate the divisor class group of the Rees algebra. Our main examples are ideals of ``virtual'' maximal minors and ideals of maximal minors ``fixing a submatrix''.
ISSN: 00029947
DOI: 10.2307/2001771

Show full item record

Page view(s)

5
Last Week
0
Last month
0
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric