Long-range functional coupling predicts performance: Oscillatory EEG networks in multisensory processing

Autor(en): Wang, Peng
Goeschl, Florian
Friese, Uwe 
Koenig, Peter 
Engel, Andreas K. 
Stichwörter: ALPHA; Attention; ATTENTION SYSTEM; BETA; EEG; GAMMA-BAND RESPONSES; HUMAN BRAIN; Multisensory; Neuroimaging; NEURONAL SYNCHRONIZATION; Neurosciences; Neurosciences & Neurology; Oscillations; Phase coupling; Phase locking value; Phase-amplitude coupling; Radiology, Nuclear Medicine & Medical Imaging; SURFACE-BASED ANALYSIS; TOP-DOWN; VISUAL-CORTEX; WORKING-MEMORY
Erscheinungsdatum: 2019
Volumen: 196
Startseite: 114
Seitenende: 125
The integration of sensory signals from different modalities requires flexible interaction of remote brain areas. One candidate mechanism to establish communication in the brain is transient synchronization of oscillatory neural signals. Although there is abundant evidence for the involvement of cortical oscillations in brain functions based on the analysis of local power, assessment of the phase dynamics among spatially distributed neuronal populations and their relevance for behavior is still sparse. In the present study, we investigated the interaction between remote brain areas by analyzing high-density electroencephalogram (EEG) data obtained from human participants engaged in a visuotactile pattern matching task. We deployed an approach for purely data-driven clustering of neuronal phase coupling in source space, which allowed imaging of large-scale functional networks in space, time and frequency without defining a priori constraints. Based on the phase coupling results, we further explored how brain areas interacted across frequencies by computing phase-amplitude coupling. Several networks of interacting sources were identified with our approach, synchronizing their activity within and across the theta (similar to 5 Hz), alpha (similar to 10 Hz), and beta (similar to 20 Hz) frequency bands and involving multiple brain areas that have previously been associated with attention and motor control. We demonstrate the functional relevance of these networks by showing that phase delays - in contrast to spectral power - were predictive of task performance. The data-driven analysis approach employed in the current study allowed an unbiased examination of functional brain networks based on EEG source level connectivity data. Showcased for multisensory processing, our results provide evidence that large-scale neuronal coupling is vital to long-range communication in the human brain and relevant for the behavioral outcome in a cognitive task.
ISSN: 10538119
DOI: 10.1016/j.neuroimage.2019.04.001

Show full item record

Page view(s)

Last Week
Last month
checked on Mar 5, 2024

Google ScholarTM