Modulation of Jovian and galactic electrons in the heliosphere 1. Latitudinal transport of a few MeV electrons

Autor(en): Ferreira, SES
Potgieter, MS
Burger, RA
Heber, B
Fichtner, H
Stichwörter: Astronomy & Astrophysics; COEFFICIENTS; CONTINUUM GAMMA-RAYS; COSMIC-RAYS; FLUXES; GALAXY; MAGNETIC-FIELD; MAGNETOSPHERE; PERPENDICULAR DIFFUSION; PROPAGATION; ULYSSES
Erscheinungsdatum: 2001
Herausgeber: AMER GEOPHYSICAL UNION
Journal: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
Volumen: 106
Ausgabe: A11
Startseite: 24979
Seitenende: 24987
Zusammenfassung: 
The heliospheric modulation of galactic and Jovian electrons is studied using a fully three-dimensional, steady state model based on Parker's transport equation including the Jovian source. The modulation of low-energy electrons is a handy tool to establish and to construct a suitable diffusion tensor to assure compatibility between model computations and observations from the Ulysses spacecraft. This is because electron modulation responds directly to the energy dependence of the diffusion coefficients below similar to 500 MeV in contrast to protons which experience large adiabatic energy losses below this energy. The model is used to study the latitudinal transport of both Jovian and 4-20 MeV galactic electrons by illustrating how the electron intensities are affected at different latitudes when enhancing perpendicular diffusion in the polar direction. In particular, the electron intensity-time profile along the Ulysses trajectory is calculated for various assumptions for perpendicular diffusion in the polar direction and compared to the 3-10 MeV electron flux observed by Ulysses from launch up to the end of the first out of the ecliptic orbit. Comparison of the model computations and the observations give an indication as to the magnitude of this diffusion coefficient. The relative contributions of the Jovian and galactic electrons to the total electron intensity is shown along the Ulysses trajectory.
ISSN: 21699380
DOI: 10.1029/2001JA000082

Show full item record

Google ScholarTM

Check

Altmetric