Complex magnetism in ultra-thin films: atomic-scale spin structures and resolution by the spin-polarized scanning tunneling microscope

DC FieldValueLanguage
dc.contributor.authorHeinze, S
dc.contributor.authorKurz, P
dc.contributor.authorWortmann, D
dc.contributor.authorBihlmayer, G
dc.contributor.authorBlugel, S
dc.date.accessioned2021-12-23T16:17:12Z-
dc.date.available2021-12-23T16:17:12Z-
dc.date.issued2002
dc.identifier.issn09478396
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/12249-
dc.description.abstractIn this paper we present a density functional theory investigation of complex magnetic structures in ultra-thin films. The focus is on magnetically frustrated antiferromagnetic Cr and Mn monolayers deposited on a triangular lattice provided by a Ag (I 11) substrate. This involves non-collinear magnetic structures, which we treat by first-principles calculations on the basis of the vector spin-density formulation of the density functional theory. We find for Cr/Ag (I 11) a coplanar non-collinear periodic 120degrees Neel structure, for Mn/Ag (111) a row-wise antiferromagnetic structure, and for Fe/Ag (111) a ferromagnetic structure as magnetic ground states. The spin-polarized scanning tunneling microscope (SP-STM) operated in the constant-current mode is proposed as a powerful tool to investigate complex atomic-scale magnetic structures of otherwise chemically equivalent atoms. We discuss a recent application of this operation mode of the SP-STM on Mn/W (110), which led to the first observation of a two-dimensional antiferromagnet on a non-magnetic metal. The future potential of this approach is demonstrated by calculating SP-STM images for different magnetic structures of Cr/Ag (111). The results show that the predicted non-collinear magnetic ground state structure can clearly be discriminated from competing magnetic structures. A general discussion of the application of different operation modes of the SP-STM is presented on the basis of the model of Tersoff and Hamann.
dc.language.isoen
dc.publisherSPRINGER
dc.relation.ispartofAPPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
dc.subjectANTIFERROMAGNETISM
dc.subjectCR
dc.subjectCU(111)
dc.subjectELECTRONIC-STRUCTURE
dc.subjectGD(0001)
dc.subjectGROWTH
dc.subjectMaterials Science
dc.subjectMaterials Science, Multidisciplinary
dc.subjectMN FILMS
dc.subjectMONOLAYERS
dc.subjectPhysics
dc.subjectPhysics, Applied
dc.subjectSPECTROSCOPY
dc.subjectSURFACES
dc.titleComplex magnetism in ultra-thin films: atomic-scale spin structures and resolution by the spin-polarized scanning tunneling microscope
dc.typejournal article
dc.identifier.doi10.1007/s003390101052
dc.identifier.isiISI:000175356400004
dc.description.volume75
dc.description.issue1
dc.description.startpage25
dc.description.endpage36
dc.contributor.orcid0000-0001-9987-4733
dc.contributor.orcid0000-0002-6615-1122
dc.contributor.orcid0000-0001-5852-0082
dc.contributor.orcid0000-0002-2248-1904
dc.contributor.researcheridJ-8323-2013
dc.contributor.researcheridG-5279-2013
dc.identifier.eissn14320630
dc.publisher.place233 SPRING ST, NEW YORK, NY 10013 USA
dcterms.isPartOf.abbreviationAppl. Phys. A-Mater. Sci. Process.
crisitem.author.deptFB 04 - Physik-
crisitem.author.deptidfb04-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.netidStHe633-
Show simple item record

Page view(s)

2
Last Week
0
Last month
1
checked on May 17, 2024

Google ScholarTM

Check

Altmetric