Chaos and fractals in fish school motion

Autor(en): Tikhonov, DA
Enderlein, J 
Malchow, H 
Medvinsky, AB
Stichwörter: BIOMASS; DYNAMICS; Mathematics; Mathematics, Interdisciplinary Applications; MODEL; NORWEGIAN SEA; PATTERN-FORMATION; Physics; Physics, Mathematical; Physics, Multidisciplinary; SIGNALS; ZOOPLANKTON
Erscheinungsdatum: 2001
Herausgeber: PERGAMON-ELSEVIER SCIENCE LTD
Journal: CHAOS SOLITONS & FRACTALS
Volumen: 12
Ausgabe: 2
Startseite: 277
Seitenende: 288
Zusammenfassung: 
The once abstract notions of fractal patterns and processes now appear naturally and inevitably in various chaotic dynamical systems. The examples range from Brownian motion [1-5] to the dynamics of social relations [6]. In this paper, after introducing a certain hybrid mathematical model of the plankton-fish school interplay, we study the fractal properties of the model fish school walks. We show that the complex planktivorous fish school motion is dependent on the fish predation rate. A decrease in the rate is followed by a transition from low-persistent to high-persistent fish school walks, i.e., from a motion with frequent to a motion with few changes of direction. The low-persistent motion shows fractal properties for all time scales, whereas the high-persistent motion has pronounced multifractal properties For large-scale displacements. (C) 2000 Elsevier Science Ltd. All rights reserved.
ISSN: 09600779
DOI: 10.1016/S0960-0779(00)00049-7

Show full item record

Page view(s)

2
Last Week
0
Last month
0
checked on Apr 18, 2024

Google ScholarTM

Check

Altmetric