Magnetic anisotropy related to strain and thickness of ultrathin iron oxide films on MgO(001)

DC ElementWertSprache
dc.contributor.authorSchemme, T.
dc.contributor.authorPathe, N.
dc.contributor.authorNiu, G.
dc.contributor.authorBertram, F.
dc.contributor.authorKuschel, T.
dc.contributor.authorKuepper, K.
dc.contributor.authorWollschlaeger, J.
dc.date.accessioned2021-12-23T16:19:04Z-
dc.date.available2021-12-23T16:19:04Z-
dc.date.issued2015
dc.identifier.issn20531591
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/12969-
dc.description.abstractIron oxide films with different thicknesses (7.6-30 nm) were grown on clean MgO(001) substrates using reactive molecular beam epitaxy at 250 degrees C depositing Fe in a 5 x 10(-5) mbar oxygen atmosphere. X-ray photoelectron spectra and low energy electron diffraction experiments indicate the stoichiometry and the surface structure of magnetite (Fe3O4). Film thicknesses and the lattice constants were analyzed ex situ by x-ray reflectometry and x-ray diffraction, respectively. These experiments reveal the single crystalline and epitactic state of the iron oxide films. However, the obtained vertical layer distances are too small to be strained magnetite and would rather suit to maghemite. Although Raman spectroscopy carried out to analyze the present iron oxide phase showed that the films might have slightly been oxidized in ambient conditions, a posteriori performed XPS measurements exclude a strong oxidation of the surface. Therefore we consider the presence of anti phase boundaries to explain the low vertical layer distances of the magnetite films. Further magnetooptic Kerr measurements were performed to investigate the magnetic properties. While the thinnest film shows a magnetic isotropic behavior, the thicker films exhibit a fourfold magnetic in-plane anisotropy. The magnetic easy axes are in the Fe3O4 < 110 > directions. We propose that the magnetocrystalline anisotropy is too weak for very thin iron oxide films to form fourfold anisotropy related to the cubic crystal structure.
dc.description.sponsorshipDFGGerman Research Foundation (DFG)European Commission [KU2321/2-1]; We would like to thank W Caliebe for assistance in using beamline W1. Financial support by the DFG (KU2321/2-1) is gratefully acknowledged.
dc.language.isoen
dc.publisherIOP PUBLISHING LTD
dc.relation.ispartofMATERIALS RESEARCH EXPRESS
dc.subjectcrystal anisotropy
dc.subjectFE3O4
dc.subjectGROWTH
dc.subjectHETEROEPITAXIAL MAGNETITE
dc.subjectmagnetite
dc.subjectMaterials Science
dc.subjectMaterials Science, Multidisciplinary
dc.subjectRaman spectroscopy
dc.subjectrelaxation
dc.subjectSIZE
dc.subjectstructure
dc.subjectSURFACE-STRUCTURE
dc.subjectTHIN-FILMS
dc.subjectultrathin film
dc.subjectx-ray diffraction
dc.subjectXPS
dc.titleMagnetic anisotropy related to strain and thickness of ultrathin iron oxide films on MgO(001)
dc.typejournal article
dc.identifier.doi10.1088/2053-1591/2/1/016101
dc.identifier.isiISI:000369978500033
dc.description.volume2
dc.description.issue1
dc.contributor.orcid0000-0002-9371-8876
dc.contributor.orcid0000-0001-6590-9483
dc.contributor.orcid0000-0002-8813-8885
dc.contributor.orcid0000-0001-9002-4118
dc.contributor.researcheridB-5747-2013
dc.contributor.researcheridG-1397-2016
dc.contributor.researcheridD-9729-2013
dc.contributor.researcheridA-8325-2019
dc.contributor.researcheridM-7279-2013
dc.publisher.placeTEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
dcterms.isPartOf.abbreviationMater. Res. Express
crisitem.author.deptFB 04 - Physik-
crisitem.author.deptUniversität Osnabrück-
crisitem.author.deptUniversität Osnabrück-
crisitem.author.deptidfb04-
crisitem.author.orcid0000-0001-9002-4118-
crisitem.author.orcid0000-0002-9371-8876-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.netidScTo645-
crisitem.author.netidPaNi001-
crisitem.author.netidBeFl001-
crisitem.author.netidKuTi001-
Zur Kurzanzeige

Seitenaufrufe

5
Letzte Woche
2
Letzter Monat
2
geprüft am 08.06.2024

Google ScholarTM

Prüfen

Altmetric