Quadratic magnetooptic spectroscopy setup based on photoelastic light modulation

DC ElementWertSprache
dc.contributor.authorSilber, Robin
dc.contributor.authorTomickova, Michaela
dc.contributor.authorRodewald, Jari
dc.contributor.authorWollschlaeger, Joachim
dc.contributor.authorPistora, Jaromir
dc.contributor.authorVeis, Martin
dc.contributor.authorKuschel, Timo
dc.contributor.authorHamrle, Jaroslav
dc.date.accessioned2021-12-23T16:20:03Z-
dc.date.available2021-12-23T16:20:03Z-
dc.date.issued2018
dc.identifier.issn15694410
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/13308-
dc.description.abstractIn most of the cases the magnetooptic Kerr effect (MOKE) techniques rely solely on the effects linear in magnetization (M). Nevertheless, a higher-order term being proportional to M-2 and called quadratic MOKE (QMOKE) can additionally contribute to experimental data. Handling and understanding the underlying origin of QMOKE could be the key to utilize this effect for investigation of antiferromagnetic materials in the future due to their vanishing first order MOKE contribution. Also, better understanding of QMOKE and hence better understanding of magnetooptic (MO) effects in general is very valuable, as the MO effect is very much employed in research of ferro- and ferrimagnetic materials. Therefore, we present our QMOKE and longitudinal MOKE spectroscopy setup with a spectral range of 0.8-5.5 eV. The setup is based on light modulation through a photoelastic modulator and detection of second-harmonic intensity by a lock-in amplifier. To measure the Kerr ellipticity an achromatic compensator is used within the setup, whereas without it Kerr rotation is measured. The separation of QMOKE spectra directly from the measured data is based on measurements with multiple magnetization directions. So far the QMOKE separation algorithm is developed and tested for but not limited to cubic (001) oriented samples. The QMOKE spectra yielded by our setup arise from two quadratic MO parameters G(s) and 2G(44), being elements of quadratic MO tensor G, which describes perturbation of the permittivity tensor in the second order in M.
dc.description.sponsorshipEuropean Regional Development Fund in the IT4Innovations national supercomputing center - path to exascale project within the Operational Programme Research, Development and Education [CZ.02.1.01/0.0/0.0/16_013/0001791]; EUEuropean Commission [CZ.02.1.01/0.0/0.0/15_003/0000487]; Czech Science FoundationGrant Agency of the Czech Republic [GA15-08971S]; Deutsche ForschungsgemeinschaftGerman Research Foundation (DFG) [DFG Re 1052/37-1]; Student Grant Competition of VSB-TU Ostrava [SP2017/43]; This work was supported by the European Regional Development Fund in the IT4Innovations national supercomputing center - path to exascale project, project number CZ.02.1.01/0.0/0.0/16_013/0001791 within the Operational Programme Research, Development and Education and EU project CZ.02.1.01/0.0/0.0/15_003/0000487 (Matfun). The work was further supported by Czech Science Foundation (GA15-08971S) and by Deutsche Forschungsgemeinschaft (DFG Re 1052/37-1). Minor support was also provided by Student Grant Competition of VSB-TU Ostrava (SP2017/43).
dc.language.isoen
dc.publisherELSEVIER SCIENCE BV
dc.relation.ispartofPHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS
dc.subjectANISOTROPY
dc.subjectCRYSTALS
dc.subjectMagnetite
dc.subjectMagnetooptic spectroscopy
dc.subjectMagnetooptic tensors
dc.subjectMaterials Science
dc.subjectMaterials Science, Multidisciplinary
dc.subjectMOKE
dc.subjectMULTILAYERS
dc.subjectNanoscience & Nanotechnology
dc.subjectNI-FE BILAYERS
dc.subjectOptics
dc.subjectPERMITTIVITY
dc.subjectPhotoelastic modulator
dc.subjectPhysics
dc.subjectPhysics, Applied
dc.subjectQuadratic magnetooptic Kerr effect
dc.subjectScience & Technology - Other Topics
dc.subjectTENSOR
dc.subjectTHIN-FILMS
dc.titleQuadratic magnetooptic spectroscopy setup based on photoelastic light modulation
dc.typejournal article
dc.identifier.doi10.1016/j.photonics.2018.05.007
dc.identifier.isiISI:000445716900008
dc.description.volume31
dc.description.startpage60
dc.description.endpage65
dc.contributor.orcid0000-0002-9371-8876
dc.contributor.orcid0000-0001-6170-7585
dc.contributor.orcid0000-0002-8443-0563
dc.contributor.orcid0000-0002-0426-3591
dc.contributor.researcheridB-5747-2013
dc.contributor.researcheridQ-6391-2017
dc.contributor.researcheridAAG-8096-2019
dc.identifier.eissn15694429
dc.publisher.placePO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
dcterms.isPartOf.abbreviationPhotonics Nanostruct.
dcterms.oaStatusGreen Submitted
crisitem.author.deptFB 04 - Physik-
crisitem.author.deptFB 04 - Physik-
crisitem.author.deptidfb04-
crisitem.author.deptidfb04-
crisitem.author.orcid0000-0002-0426-3591-
crisitem.author.orcid0000-0002-3043-3718-
crisitem.author.orcid0000-0002-9371-8876-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.netidRoJa644-
crisitem.author.netidWoJo788-
crisitem.author.netidKuTi001-
Zur Kurzanzeige

Seitenaufrufe

1
Letzte Woche
0
Letzter Monat
0
geprüft am 13.05.2024

Google ScholarTM

Prüfen

Altmetric