Reduction and protonation of the secondary quinone acceptor of Rhodobacter sphaeroides photosynthetic reaction center: kinetic model based on a comparison of wild-type chromatophores with mutants carrying Arg -> Ile substitution at sites 207 and 217 in the L-subunit

DC ElementWertSprache
dc.contributor.authorCherepanov, DA
dc.contributor.authorBibikov, SI
dc.contributor.authorBibikova, MV
dc.contributor.authorBloch, DA
dc.contributor.authorDrachev, LA
dc.contributor.authorGopta, OA
dc.contributor.authorOesterhelt, D
dc.contributor.authorSemenov, AY
dc.contributor.authorMulkidjanian, AY
dc.date.accessioned2021-12-23T16:20:22Z-
dc.date.available2021-12-23T16:20:22Z-
dc.date.issued2000
dc.identifier.issn00052728
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/13430-
dc.description.abstractAfter the light-induced charge separation in the photosynthetic reaction center (RC) of Rhodobacter sphaeroides, the electron reaches, via the tightly bound ubiquinone Q(A), the loosely bound ubiquinone Q(B). After two subsequent flashes of light, Q(B) is reduced to ubiquinol Q(B)H(2). With a semiquinone anion Q(B)(-) formed as an intermediate after the first flash. We studied Q(B)H(2) formation in chromatophores from Rb. sphaeroides mutants that carried Arg --> Ile substitution at sites 207 and 217 in the L-subunit. While Arg-L207 is 17 Angstrom away from Q(B), Arg-L217 is closer (9 Angstrom) and contacts the Q(B)-binding pocket. From the pH dependence of the charge recombination in the RC after the first flash, we estimated Delta G(AB), the free energy difference between the Q(A)(-)Q(B) and Q(A)Q(B)(-) states, and pK(212), the apparent pK of Glu-L212, a residue that is only 4 Angstrom away from Q(B). As expected, the replacement of positively charged arginines by neutral isoleucines destabilized the Q(B)(-) state in the L217RI mutant to a larger extent than in the L207RI one. Also as expected, pK(212) increased by similar to 0.4 pH units in the L207RI mutant. The value of pK(212) in the L217RI mutant decreased by 0.3 pH units, contrary to expectations. The rate of the Q(A)(-)Q(B)(-) --> Q(A)Q(B)H(2) transition upon the second flash, as monitored by electrometry via the accompanying changes in the membrane potential, was two times faster in the L207RI mutant than in the wild-type, but remained essentially unchanged in the L217RI mutant. To rationalize these findings, we developed and analyzed a kinetic model of the Q(A)(-)Q(B)(-) --> Q(A)Q(B)H(2) transition. The model properly described the available experimental data and provided a set of quantitative kinetic and thermodynamic parameters of the Q(B) turnover. The non-electrostatic, `chemical' affinity of the Q(B) Site to protons proved to be as important for the attracting protons from the bulk, as the appropriate electrostatic potential. The mutation-caused changes in the chemical proton affinity could be estimated from the difference between the experimentally established pK(212) shifts and the expected changes in the electrostatic potential at Glu-L212, calculable from the X-ray structure of the RC. Based on functional studies, structural data and kinetic modeling, we suggest a mechanistic scheme of the Q(B) turnover. The detachment of the formed ubiquinol from its proximal position next to Glu-L212 is considered as the rate-limiting step of the reaction cycle. (C) 2000 Elsevier Science B.V. All rights reserved.
dc.language.isoen
dc.publisherELSEVIER SCIENCE BV
dc.relation.ispartofBIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
dc.subjectBACTERIAL REACTION CENTERS
dc.subjectBINDING-SITE
dc.subjectBiochemistry & Molecular Biology
dc.subjectBiophysics
dc.subjectCYTOCHROME-C-OXIDASE
dc.subjectDIRECTED MUTANTS
dc.subjectelectrogenesis
dc.subjectelectron transfer
dc.subjectELECTRON-TRANSFER
dc.subjectH+ BINDING
dc.subjectmembrane potential
dc.subjectphotosynthetic reaction center
dc.subjectPROTEIN
dc.subjectprotein electrostatics
dc.subjectproton transfer
dc.subjectPURPLE BACTERIA
dc.subjectQ(B) SITE
dc.subjectRhodobacter sphaeroides
dc.subjectRhodopseudomonas viridis
dc.subjectRHODOPSEUDOMONAS-VIRIDIS
dc.subjectubiquinone
dc.titleReduction and protonation of the secondary quinone acceptor of Rhodobacter sphaeroides photosynthetic reaction center: kinetic model based on a comparison of wild-type chromatophores with mutants carrying Arg -> Ile substitution at sites 207 and 217 in the L-subunit
dc.typejournal article
dc.identifier.doi10.1016/S0005-2728(00)00110-9
dc.identifier.isiISI:000088738000002
dc.description.volume1459
dc.description.issue1
dc.description.startpage10
dc.description.endpage34
dc.contributor.orcid0000-0001-5844-3064
dc.contributor.orcid0000-0003-1035-0381
dc.contributor.orcid0000-0001-6286-4638
dc.contributor.researcheridJ-8086-2013
dc.contributor.researcheridG-2759-2014
dc.contributor.researcheridR-8391-2016
dc.contributor.researcheridAAH-3608-2021
dc.publisher.placePO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
dcterms.isPartOf.abbreviationBiochim. Biophys. Acta-Bioenerg.
dcterms.oaStatusBronze
Zur Kurzanzeige

Seitenaufrufe

1
Letzte Woche
0
Letzter Monat
0
geprüft am 29.05.2024

Google ScholarTM

Prüfen

Altmetric