Vps39 Interacts with Tom40 to Establish One of Two Functionally Distinct Vacuole-Mitochondria Contact Sites

DC ElementWertSprache
dc.contributor.authorMontoro, Ayelen Gonzalez
dc.contributor.authorAuffarth, Kathrin
dc.contributor.authorHoenscher, Carina
dc.contributor.authorBohnert, Maria
dc.contributor.authorBecker, Thomas
dc.contributor.authorWarscheid, Bettina
dc.contributor.authorReggiori, Fulvio
dc.contributor.authorvan der Laan, Martin
dc.contributor.authorFroehlich, Florian
dc.contributor.authorUngermann, Christian
dc.date.accessioned2021-12-23T16:21:05Z-
dc.date.available2021-12-23T16:21:05Z-
dc.date.issued2018
dc.identifier.issn15345807
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/13722-
dc.description.abstractThe extensive subcellular network of membrane contact sites plays central roles in organelle biogenesis and communication, yet the precise contributions of the involved machineries remain largely enigmatic. The yeast vacuole forms a membrane contact site with mitochondria, called vacuolar and mitochondrial patch (vCLAMP). Formation of vCLAMPs involves the vacuolar Rab GTPase Ypt7 and the Ypt7-interacting Vps39 subunit of the HOPS tethering complex. Here, we uncover the general preprotein translocase of the outer membrane (TOM) subunit Tom40 as the direct binding partner of Vps39 on mitochondria. We identify Vps39 mutants defective in TOM binding, but functional for HOPS. Cells that cannot form vCLAMPs show reduced growth under stress conditions and impaired survival upon starvation. Unexpectedly, our mutant analysis revealed the existence of two functionally independent vacuole-mitochondria MCSs: one formed by the Ypt7-Vps39-Tom40 tether and a second one by Vps13-Mcp1, which is redundant with ER-mitochondrial contacts formed by ERMES.
dc.description.sponsorshipDFGGerman Research Foundation (DFG)European Commission [UN111/10-1, FR 3647/2-1, SFB 894, IRTG 1830]; European Molecular Biology OrganizationEuropean Molecular Biology Organization (EMBO) [EMBO ALTF 873-2015]; European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant [705853]; Deutsche ForschungsgemeinschaftGerman Research Foundation (DFG) [BE 4679/2-1, SFB 746]; Deutsche Forschungsgemeinschaft (Research Training Group RTG 2202)German Research Foundation (DFG); Excellence Initiative of the German Federal Government [EXC 294 BIOSS]; Excellence Initiative of the German State Government [EXC 294 BIOSS]; [Sonderforschungsbereich (SFB) 944]; [SFB 944]; We thank Maya Schuldiner, Benoit Kornmann, and Bernard Guiard for strains and plasmids; Max-Hinderk Schuler for the basic characterization of yeast mutants; and all members of the Ungermann group for helpful discussions. We thank Stefan Walter for support with all mass spectrometry-based experiments. This work was funded by a grant of the DFG to C.U. (UN111/10-1) with additional support by the Sonderforschungsbereich (SFB) 944. A.G.M. is recipient of a postdoctoral fellowship of the European Molecular Biology Organization (EMBO ALTF 873-2015) and a young investigator grant of the SFB 944. F.F. is supported by a grant from the DFG (FR 3647/2-1). M.B. is supported by the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 705853. Research from T.B. is supported by grants from the Deutsche Forschungsgemeinschaft (BE 4679/2-1; SFB 746, Research Training Group RTG 2202). B.W. and T.B. are supported by the Excellence Initiative of the German Federal & State Governments (EXC 294 BIOSS). M.v.d.L. is supported by grants of the DFG (SFB 894 and the IRTG 1830).
dc.language.isoen
dc.publisherCELL PRESS
dc.relation.ispartofDEVELOPMENTAL CELL
dc.subjectCell Biology
dc.subjectCELLULAR-METABOLISM
dc.subjectDevelopmental Biology
dc.subjectER-MITOCHONDRIA
dc.subjectHOPS TETHERING COMPLEX
dc.subjectMOLECULAR ARCHITECTURE
dc.subjectOUTER-MEMBRANE
dc.subjectPREPROTEIN TRANSLOCASE
dc.subjectPROTEIN
dc.subjectRAB INTERACTIONS
dc.subjectSACCHAROMYCES-CEREVISIAE
dc.subjectYEAST
dc.titleVps39 Interacts with Tom40 to Establish One of Two Functionally Distinct Vacuole-Mitochondria Contact Sites
dc.typejournal article
dc.identifier.doi10.1016/j.devcel.2018.05.011
dc.identifier.isiISI:000435092700011
dc.description.volume45
dc.description.issue5
dc.description.startpage621+
dc.contributor.orcid0000-0002-8154-555X
dc.contributor.orcid0000-0003-2652-2686
dc.contributor.orcid0000-0003-0789-9912
dc.contributor.orcid0000-0001-5096-1975
dc.contributor.orcid0000-0001-8307-2189
dc.contributor.researcheridAAS-9404-2020
dc.contributor.researcheridU-8327-2019
dc.contributor.researcheridAAB-7704-2019
dc.identifier.eissn18781551
dc.publisher.place50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA
dcterms.isPartOf.abbreviationDev. Cell
dcterms.oaStatusBronze
crisitem.author.deptSonderforschungsbereich 944: Physiologie und Dynamik zellulärer Mikrokompartimente-
crisitem.author.deptidorganisation19-
crisitem.author.orcid0000-0001-8307-2189-
crisitem.author.parentorgFB 05 - Biologie/Chemie-
crisitem.author.grandparentorgUniversität Osnabrück-
crisitem.author.netidFrFl166-
crisitem.author.netidUnCh999-
Zur Kurzanzeige

Seitenaufrufe

10
Letzte Woche
0
Letzter Monat
0
geprüft am 08.06.2024

Google ScholarTM

Prüfen

Altmetric