Optical manipulation of sphingolipid biosynthesis using photoswitchable ceramides

Autor(en): Kol, Matthijs
Williams, Ben
Toombs-Ruane, Henry
Franquelim, Henri G.
Korneev, Sergei 
Schroeer, Christian
Schwille, Petra
Trauner, Dirk
Holthuis, Joost C. M.
Frank, James A.
Stichwörter: ASYMMETRIC-SYNTHESIS; Biology; CROSS-METATHESIS; EFFICIENT; GROWTH; INHIBITORS; Life Sciences & Biomedicine - Other Topics; LIPIDS; METABOLISM; SPHINGOMYELIN SYNTHASES; SPHINGOSINE; TRANSPORT
Erscheinungsdatum: 2019
Herausgeber: ELIFE SCIENCES PUBLICATIONS LTD
Journal: ELIFE
Volumen: 8
Zusammenfassung: 
Ceramides are central intermediates of sphingolipid metabolism that also function as potent messengers in stress signaling and apoptosis. Progress in understanding how ceramides execute their biological roles is hampered by a lack of methods to manipulate their cellular levels and metabolic fate with appropriate spatiotemporal precision. Here, we report on clickable, azobenzene-containing ceramides, caCers, as photoswitchable metabolic substrates to exert optical control over sphingolipid production in cells. Combining atomic force microscopy on model bilayers with metabolic tracing studies in cells, we demonstrate that light-induced alterations in the lateral packing of caCers lead to marked differences in their metabolic conversion by sphingomyelin synthase and glucosylceramide synthase. These changes in metabolic rates are instant and reversible over several cycles of photoswitching. Our findings disclose new opportunities to probe the causal roles of ceramides and their metabolic derivatives in a wide array of sphingolipid-dependent cellular processes with the spatiotemporal precision of light.
ISSN: 2050084X
DOI: 10.7554/eLife.43230

Show full item record

Page view(s)

1
Last Week
0
Last month
0
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric