Gate-Voltage Response of a One-Dimensional Ballistic Spin Valve without Spin-Orbit Interaction

DC FieldValueLanguage
dc.contributor.authorMisiorny, Maciej
dc.contributor.authorMeyer, Carola
dc.date.accessioned2021-12-23T16:21:17Z-
dc.date.available2021-12-23T16:21:17Z-
dc.date.issued2017
dc.identifier.issn23317019
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/13803-
dc.description.abstractWe show that the engineering of tunnel barriers forming at the interfaces of a one-dimensional spin valve provides a viable path to a strong gate-voltage tunability of the magnetoresistance effect. Specifically, we investigate theoretically a carbon nanotube (CNT) spin valve in terms of the influence of the CNT-contact interface on the performance of the device. The focus is on the strength and the spin selectivity of the tunnel barriers that are modeled as Dirac-delta potentials. The scattering matrix approach is used to derive the transmission coefficient that yields the tunneling magnetoresistance (TMR). We find a strong nontrivial gate-voltage response of the TMR in the absence of spin-orbit coupling when the energy of the incident electrons matches the potential energy of the barrier. Analytic expressions for the TMR in various limiting cases are derived. These expressions are used to explain previous experimental results, and also to predict prospective ways for device optimization with respect to the size and tunability of the TMR effect in the ballistic transport regime by means of engineering the tunnel barriers at the CNT-contact interfaces.
dc.description.sponsorshipAlexander von Humboldt FoundationAlexander von Humboldt Foundation; Polish Ministry of Science and Higher EducationMinistry of Science and Higher Education, Poland [0066/E-336/9/2014]; Knut and Alice Wallenberg FoundationKnut & Alice Wallenberg Foundation; DFGGerman Research Foundation (DFG)European Commission [FOR912]; ``Niedersachsiche Vorab'' program of the Volkswagen Stiftung; The authors thank P. Mavropoulos and J. Splettstoesser for the fruitful discussions. M. M. acknowledges financial support from the Alexander von Humboldt Foundation, the Polish Ministry of Science and Higher Education through a young scientist fellowship (No. 0066/E-336/9/2014), and the Knut and Alice Wallenberg Foundation. C. M. acknowledges financial support from DFG Research Unit FOR912 and by the ``Niedersachsiche Vorab'' program of the Volkswagen Stiftung.
dc.language.isoen
dc.publisherAMER PHYSICAL SOC
dc.relation.ispartofPHYSICAL REVIEW APPLIED
dc.subjectABRUPT HETEROJUNCTION
dc.subjectCARBON
dc.subjectCOHERENT TRANSPORT
dc.subjectEFFECTIVE-MASS
dc.subjectELECTRON TRANSMISSION
dc.subjectGRAPHENE
dc.subjectINTERFACE CONNECTION RULES
dc.subjectMAGNETORESISTANCE
dc.subjectPhysics
dc.subjectPhysics, Applied
dc.subjectSINGLE
dc.subjectWAVE-FUNCTIONS
dc.titleGate-Voltage Response of a One-Dimensional Ballistic Spin Valve without Spin-Orbit Interaction
dc.typejournal article
dc.identifier.doi10.1103/PhysRevApplied.7.024011
dc.identifier.isiISI:000393748700004
dc.description.volume7
dc.description.issue2
dc.contributor.orcid0000-0002-9279-5618
dc.contributor.orcid0000-0003-0851-2767
dc.contributor.researcheridL-9076-2016
dc.contributor.researcheridI-1723-2012
dc.publisher.placeONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
dcterms.isPartOf.abbreviationPhys. Rev. Appl.
dcterms.oaStatusGreen Submitted, Green Published
crisitem.author.deptFB 04 - Physik-
crisitem.author.deptidfb04-
crisitem.author.orcid0000-0003-0851-2767-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.netidMeCa197-
Show simple item record

Page view(s)

3
Last Week
0
Last month
2
checked on May 19, 2024

Google ScholarTM

Check

Altmetric