Engineered Ferritin for Magnetogenetic Manipulation of Proteins and Organelles Inside Living Cells

DC ElementWertSprache
dc.contributor.authorLisse, Domenik
dc.contributor.authorMonzel, Cornelia
dc.contributor.authorVicario, Chiara
dc.contributor.authorManzi, John
dc.contributor.authorMaurin, Isabelle
dc.contributor.authorCoppey, Mathieu
dc.contributor.authorPiehler, Jacob
dc.contributor.authorDahan, Maxime
dc.date.accessioned2021-12-23T16:21:48Z-
dc.date.available2021-12-23T16:21:48Z-
dc.date.issued2017
dc.identifier.issn09359648
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/14024-
dc.description.abstractMagnetogenetics is emerging as a novel approach for remote-controlled manipulation of cellular functions in tissues and organisms with high spatial and temporal resolution. A critical, still challenging issue for these techniques is to conjugate target proteins with magnetic probes that can satisfy multiple colloidal and biofunctional constraints. Here, semisynthetic magnetic nanoparticles are tailored based on human ferritin coupled to monomeric enhanced green fluorescent protein (mEGFP) for magnetic manipulation of proteins inside living cells. This study demonstrates efficient delivery, intracellular stealth properties, and rapid subcellular targeting of those magnetic nanoparticles via GFP-nanobody interactions. By means of magnetic field gradients, rapid spatial reorganization in the cytosol of proteins captured to the nanoparticle surface is achieved. Moreover, exploiting efficient nanoparticle targeting to intracellular membranes, remote-controlled arrest of mitochondrial dynamics using magnetic fields is demonstrated. The studies establish subcellular control of proteins and organelles with unprecedented spatial and temporal resolution, thus opening new prospects for magnetogenetic applications in fundamental cell biology and nanomedicine.
dc.description.sponsorshipGerman Academic Exchange Service (DAAD)Deutscher Akademischer Austausch Dienst (DAAD); Fonds der Chemischen IndustrieFonds der Chemischen IndustrieEuropean Commission; French National Research Agency (ANR)French National Research Agency (ANR) [ANR-10-IDEX-0001-02 PSL]; Labex CelTisPhyBio [ANR-10-LBX-0038]; European Union's Horizon Research and Innovation Programme [686841]; D.L. and C.M. contributed equally to this work. D.L. acknowledges Oliver Beutel for fruitful discussions in the early phase of the project. C.M. acknowledges financial support from German Academic Exchange Service (DAAD) and Fonds der Chemischen Industrie. M.D. acknowledges funding from French National Research Agency (ANR) Paris-Science-Lettres Program (No. ANR-10-IDEX-0001-02 PSL). D.L. and M.D. acknowledge funding from Labex CelTisPhyBio (No. ANR-10-LBX-0038). This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 686841 (MAGNEURON). The authors thank Karin Busch for fruitful discussions, and Gaetan Cornilleau, Fanny Cayrac, Su Jin Paik, Thibaut Lagny, and Aurelie di Cicco for technical assistance and are grateful to Franck Perez and Gaelle Boncompain for sharing constructs of the RUSH system, and to Maria Carla Parrini and Jacques Camonis for the mCherry::LC3B plasmid. D.L., C.M., C.V., J.M., and I. M. performed the experiments. D.L. and C.M. analyzed the data. D.L., J.P., and M.D. conceived the project. The manuscript was written by D.L., C.M., J.P., and M.D. The authors have no competing financial interests.
dc.language.isoen
dc.publisherWILEY-V C H VERLAG GMBH
dc.relation.ispartofADVANCED MATERIALS
dc.subjectChemistry
dc.subjectChemistry, Multidisciplinary
dc.subjectChemistry, Physical
dc.subjectferritin
dc.subjectGLUCOSE
dc.subjectintracellular protein manipulation
dc.subjectIRON-OXIDE NANOPARTICLES
dc.subjectmagnetic nanoparticles
dc.subjectmagnetogenetics
dc.subjectmanipulation of mitochondrial dynamics
dc.subjectMaterials Science
dc.subjectMaterials Science, Multidisciplinary
dc.subjectMICE
dc.subjectNanoscience & Nanotechnology
dc.subjectPhysics
dc.subjectPhysics, Applied
dc.subjectPhysics, Condensed Matter
dc.subjectQUALITY-CONTROL
dc.subjectScience & Technology - Other Topics
dc.subjectTOOLS
dc.titleEngineered Ferritin for Magnetogenetic Manipulation of Proteins and Organelles Inside Living Cells
dc.typejournal article
dc.identifier.doi10.1002/adma.201700189
dc.identifier.isiISI:000414756700025
dc.description.volume29
dc.description.issue42
dc.contributor.orcid0000-0003-2574-4260
dc.contributor.orcid0000-0001-8924-3233
dc.contributor.orcid0000-0002-4943-2491
dc.contributor.researcheridAAI-8253-2021
dc.contributor.researcheridAAR-3207-2020
dc.identifier.eissn15214095
dc.publisher.placePOSTFACH 101161, 69451 WEINHEIM, GERMANY
dcterms.isPartOf.abbreviationAdv. Mater.
crisitem.author.deptFB 05 - Biologie/Chemie-
crisitem.author.deptidfb05-
crisitem.author.orcid0000-0002-2143-2270-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.netidPiJa938-
Zur Kurzanzeige

Seitenaufrufe

2
Letzte Woche
0
Letzter Monat
0
geprüft am 14.05.2024

Google ScholarTM

Prüfen

Altmetric