Active Anion Delivery by Self-Propelled Microswimmers

DC ElementWertSprache
dc.contributor.authorBeladi-Mousavi, Seyyed Mohsen
dc.contributor.authorKlein, Jonas
dc.contributor.authorKhezri, Bahareh
dc.contributor.authorWalder, Lorenz
dc.contributor.authorPumera, Martin
dc.date.accessioned2021-12-23T16:21:59Z-
dc.date.available2021-12-23T16:21:59Z-
dc.date.issued2020
dc.identifier.issn19360851
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/14110-
dc.description.abstractSelf-propelled micro- and nanomachines are at the forefront of materials research, branching into applications in biomedical science and environmental remediation. Cationic frameworks enabling the collection and delivery of anionic species (A(-)) are highly required, due to the large variety of lifethreatening pollutants, such as radioactive technetium and carcinogenic chromium, and medicines, such as dexamethasone derivatives with negative charges. However, such autonomous moving carriers for active transport of the anions have been barely discussed. A polymeric viologen (PV++)-consisting of electroactive bicationic subunits-is utilized in a tubular autonomous microswimmer to selectively deliver A(-) of different sizes and charge densities. The cargo loading is based on a facile anion exchange mechanism. The packed crystal structure of PV++ allows removal of an exceptionally high quantity of anions per one microswimmer (2.55 X 10(-13) mol anions per microswimmer), a critical factor often neglected regarding the real-world application of microswimmers. Notably, there was virtually no leakage of anions during the delivery process or upon keeping the loaded microswimmers under ambient conditions for at least 4 months. Multiple release mechanisms, compatible with different environments, including electrochemical, photochemical, and a metathesis reaction, with high efficiencies up to 98% are introduced. Such functional autonomous micromachines provide great promise for the next generation of functional materials for biomedical and environmental applications.
dc.description.sponsorshipproject Advanced Functional Nanorobots (EFRR) [CZ.02.1.01/0.0/0.0/15_003/0000444]; This work was supported by the project Advanced Functional Nanorobots (Reg. No. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR). Authors thank to S. Sadaf for aid with STM imaging.
dc.language.isoen
dc.publisherAMER CHEMICAL SOC
dc.relation.ispartofACS NANO
dc.subjectACID
dc.subjectanions
dc.subjectautonomous motion
dc.subjectCAPTURE
dc.subjectcargo delivery
dc.subjectChemistry
dc.subjectChemistry, Multidisciplinary
dc.subjectChemistry, Physical
dc.subjectenvironmental remediation
dc.subjectEXCHANGE
dc.subjectMaterials Science
dc.subjectMaterials Science, Multidisciplinary
dc.subjectmicromotors
dc.subjectNANOPARTICLES
dc.subjectNanoscience & Nanotechnology
dc.subjectORGANIC NETWORK
dc.subjectOXO-ANIONS
dc.subjectREMOVAL
dc.subjectScience & Technology - Other Topics
dc.subjectTOXICITY
dc.subjectviologen
dc.titleActive Anion Delivery by Self-Propelled Microswimmers
dc.typejournal article
dc.identifier.doi10.1021/acsnano.9b09525
dc.identifier.isiISI:000526301400076
dc.description.volume14
dc.description.issue3
dc.description.startpage3434
dc.description.endpage3441
dc.contributor.orcid0000-0001-5846-2951
dc.contributor.orcid0000-0001-7910-4643
dc.contributor.orcid0000-0003-2861-0348
dc.contributor.researcheridF-2724-2010
dc.contributor.researcheridE-2080-2011
dc.contributor.researcheridAAM-6820-2020
dc.contributor.researcheridK-8708-2018
dc.identifier.eissn1936086X
dc.publisher.place1155 16TH ST, NW, WASHINGTON, DC 20036 USA
dcterms.isPartOf.abbreviationACS Nano
crisitem.author.deptInstitut für Chemie neuer Materialien-
crisitem.author.deptidinstitute11-
crisitem.author.orcid0000-0002-5497-034X-
crisitem.author.parentorgFB 05 - Biologie/Chemie-
crisitem.author.grandparentorgUniversität Osnabrück-
crisitem.author.netidWaLo966-
Zur Kurzanzeige

Seitenaufrufe

5
Letzte Woche
0
Letzter Monat
1
geprüft am 01.06.2024

Google ScholarTM

Prüfen

Altmetric