Glutamatergic correlates of gamma-band oscillatory activity during cognition: A concurrent ER-MRS and EEG study

Autor(en): Lally, Niall
Mullins, Paul G.
Roberts, Mark V.
Price, Darren
Gruber, Thomas 
Haenschel, Corinna
Stichwörter: ACTIVATION; Evoked gamma-band oscillatory activity; FREQUENCY OSCILLATIONS; Functional MRS; Glutamate; HUMAN BRAIN; IN-VIVO; LONG-TERM POTENTIATION; MAGNETIC-RESONANCE-SPECTROSCOPY; MECHANISMS; Neuroimaging; Neurosciences; Neurosciences & Neurology; Radiology, Nuclear Medicine & Medical Imaging; Repetition suppression; Repetition-enhancement; Repetition-priming; SCHIZOPHRENIA; SYNAPTIC PLASTICITY; SYNCHRONIZATION
Erscheinungsdatum: 2014
Herausgeber: ACADEMIC PRESS INC ELSEVIER SCIENCE
Journal: NEUROIMAGE
Volumen: 85
Ausgabe: 2, SI
Startseite: 823
Seitenende: 833
Zusammenfassung: 
Frequency specific synchronisation of neuronal firing within the gamma-band (30-70 Hz) appears to be a fundamental correlate of both basic sensory and higher cognitive processing. In-vitro studies suggest that the neurochemical basis of gamma-band oscillatory activity is based on interactions between excitatory (i.e. glutamate) and inhibitory (i.e. GABA) neurotransmitter concentrations. However, the nature of the relationship between excitatory neurotransmitter concentration and changes in gamma band activity in humans remains undetermined. Here, we examine the links between dynamic glutamate concentration and the formation of functional gamma-band oscillatory networks. Using concurrently acquired event-related magnetic resonance spectroscopy and electroencephalography, during a repetition-priming paradigm, we demonstrate an interaction between stimulus type (object vs. abstract pictures) and repetition in evoked gamma-band oscillatory activity, and find that glutamate levels within the lateral occipital cortex, differ in response to these distinct stimulus categories. Importantly, we show that dynamic glutamate levels are related to the amplitude of stimulus evoked gamma-band (but not to beta, alpha or theta or ERP) activity. These results highlight the specific connection between excitatory neurotransmitter concentration and amplitude of oscillatory response, providing a novel insight into the relationship between the neurochemical and neurophysiological processes underlying cognition. (C) 2013 Elsevier Inc. All rights reserved.
ISSN: 10538119
DOI: 10.1016/j.neuroimage.2013.07.049

Zur Langanzeige

Google ScholarTM

Prüfen

Altmetric