TRF1 and TRF2 use different mechanisms to find telomeric DNA but share a novel mechanism to search for protein partners at telomeres

DC ElementWertSprache
dc.contributor.authorLin, Jiangguo
dc.contributor.authorCountryman, Preston
dc.contributor.authorBuncher, Noah
dc.contributor.authorKaur, Parminder
dc.contributor.authorLongjiang, E.
dc.contributor.authorZhang, Yiyun
dc.contributor.authorGibson, Greg
dc.contributor.authorYou, Changjiang
dc.contributor.authorWatkins, Simon C.
dc.contributor.authorPiehler, Jacob
dc.contributor.authorOpresko, Patricia L.
dc.contributor.authorKad, Neil M.
dc.contributor.authorWang, Hong
dc.date.accessioned2021-12-23T16:22:47Z-
dc.date.available2021-12-23T16:22:47Z-
dc.date.issued2014
dc.identifier.issn03051048
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/14305-
dc.description.abstractHuman telomeres are maintained by the shelterin protein complex in which TRF1 and TRF2 bind directly to duplex telomeric DNA. How these proteins find telomeric sequences among a genome of billions of base pairs and how they find protein partners to form the shelterin complex remains uncertain. Using single-molecule fluorescence imaging of quantum dot-labeled TRF1 and TRF2, we study how these proteins locate TTAGG G repeats on DNA tightropes. By virtue of its basic domain TRF2 performs an extensive 1D search on nontelomeric DNA, whereas TRF1's 1D search is limited. Unlike the stable and static associations observed for other proteins at specific binding sites, TRF proteins possess reduced binding stability marked by transient binding (similar to 9-17 s) and slow 1D diffusion on specific telomeric regions. These slow diffusion constants yield activation energy barriers to sliding similar to 2.8-3.6 kappa T-B greater than those for nontelomeric DNA. We propose that the TRF proteins use 1D sliding to find protein partners and assemble the shelterin complex, which in turn stabilizes the interaction with specific telomeric DNA. This `tag-team proofreading' represents a more general mechanism to ensure a specific set of proteins interact with each other on long repetitive specific DNA sequences without requiring external energy sources.
dc.description.sponsorshipBBSRCUK Research & Innovation (UKRI)Biotechnology and Biological Sciences Research Council (BBSRC) [BB/I003460/1]; National Institutes of HealthUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA [ES0515052, 4R00ES016758]; Biotechnology and Biological Sciences Research CouncilUK Research & Innovation (UKRI)Biotechnology and Biological Sciences Research Council (BBSRC) [BB/I003460/1] Funding Source: researchfish; NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCESUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of Environmental Health Sciences (NIEHS) [R00ES016758, R01ES015052] Funding Source: NIH RePORTER; NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCESUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of General Medical Sciences (NIGMS) [U54GM103529] Funding Source: NIH RePORTER; The BBSRC [BB/I003460/1 to N.M.K.]; National Institutes of Health [ES0515052 to P.L.O. and 4R00ES016758 to H.W.]. Funding for open access charges: National Institutes of Health [4R00ES016758].
dc.language.isoen
dc.publisherOXFORD UNIV PRESS
dc.relation.ispartofNUCLEIC ACIDS RESEARCH
dc.subjectBINDING
dc.subjectBiochemistry & Molecular Biology
dc.subjectDRIVEN MECHANISMS
dc.subjectEND
dc.subjectFACILITATED TARGET LOCATION
dc.subjectMOLECULE IMAGING REVEALS
dc.subjectNUCLEIC-ACIDS
dc.subjectONE-DIMENSIONAL DIFFUSION
dc.subjectSINGLE-PARTICLE TRACKING
dc.subjectSITE
dc.subjectTRANSLOCATION
dc.titleTRF1 and TRF2 use different mechanisms to find telomeric DNA but share a novel mechanism to search for protein partners at telomeres
dc.typejournal article
dc.identifier.doi10.1093/nar/gkt1132
dc.identifier.isiISI:000332381000041
dc.description.volume42
dc.description.issue4
dc.description.startpage2493
dc.description.endpage2504
dc.contributor.orcid0000-0002-7839-6397
dc.contributor.orcid0000-0003-4092-1552
dc.contributor.orcid0000-0003-0165-3559
dc.contributor.orcid0000-0001-9183-4315
dc.contributor.orcid0000-0002-3491-8595
dc.contributor.orcid0000-0002-6470-2189
dc.contributor.researcheridL-3901-2014
dc.contributor.researcheridABG-2590-2021
dc.contributor.researcheridF-3164-2014
dc.identifier.eissn13624962
dc.publisher.placeGREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
dcterms.isPartOf.abbreviationNucleic Acids Res.
dcterms.oaStatusgold, Green Published, Green Accepted, Green Submitted
crisitem.author.deptSonderforschungsbereich 944: Physiologie und Dynamik zellulärer Mikrokompartimente-
crisitem.author.deptFB 05 - Biologie/Chemie-
crisitem.author.deptidorganisation19-
crisitem.author.deptidfb05-
crisitem.author.orcid0000-0002-7839-6397-
crisitem.author.orcid0000-0002-2143-2270-
crisitem.author.parentorgFB 05 - Biologie/Chemie-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.grandparentorgUniversität Osnabrück-
crisitem.author.netidYoCh745-
crisitem.author.netidPiJa938-
Zur Kurzanzeige

Seitenaufrufe

1
Letzte Woche
0
Letzter Monat
0
geprüft am 10.05.2024

Google ScholarTM

Prüfen

Altmetric