Magnetization and energy dynamics in spin ladders: Evidence of diffusion in time, frequency, position, and momentum

DC ElementWertSprache
dc.contributor.authorRichter, Jonas
dc.contributor.authorJin, Fengping
dc.contributor.authorKnipschild, Lars
dc.contributor.authorHerbrych, Jacek
dc.contributor.authorDe Raedt, Hans
dc.contributor.authorMichielsen, Kristel
dc.contributor.authorGemmer, Jochen
dc.contributor.authorSteinigeweg, Robin
dc.date.accessioned2021-12-23T16:23:21Z-
dc.date.available2021-12-23T16:23:21Z-
dc.date.issued2019
dc.identifier.issn24699950
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/14508-
dc.description.abstractThe dynamics of magnetization and energy densities are studied in the two-leg spin-1/2 ladder. Using an efficient pure-state approach based on the concept of typicality, we calculate spatiotemporal correlation functions for large systems with up to 40 lattice sites. In addition, two subsequent Fourier transforms from real to momentum space as well as from the time to frequency domain yield the respective dynamical structure factors. Summarizing our main results, we unveil the existence of genuine diffusion for both spin and energy. In particular, this finding is based on four distinct signatures which can all be equally well detected: (i) Gaussian density profiles, (ii) time-independent diffusion coefficients, (iii) exponentially decaying density modes, and (iv) Lorentzian line shapes of the dynamical structure factor. The combination of (i)-(iv) provides a comprehensive picture of high-temperature dynamics in this archetypal nonintegrable quantum model.
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG) within the DFG Research Unit FOR 2692German Research Foundation (DFG) [397107022 (GE 1657/3-1), 397067869 (STE 2243/3-1), 355031190]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering DivisionUnited States Department of Energy (DOE); This work has been funded by the Deutsche Forschungsgemeinschaft (DFG) - Grants No. 397107022 (GE 1657/3-1), No. 397067869 (STE 2243/3-1), No. 355031190 - within the DFG Research Unit FOR 2692. Additionally, we gratefully acknowledge the computing time granted by the JARA-HPC Vergabegremium and provided on the JARA-HPC Partition of the supercomputer JUWELS at Forschungszentrum Julich. J.H. was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
dc.language.isoen
dc.publisherAMER PHYSICAL SOC
dc.relation.ispartofPHYSICAL REVIEW B
dc.subjectCHAIN
dc.subjectCHAOS
dc.subjectMaterials Science
dc.subjectMaterials Science, Multidisciplinary
dc.subjectPhysics
dc.subjectPhysics, Applied
dc.subjectPhysics, Condensed Matter
dc.subjectQUANTUM
dc.subjectSTATISTICAL-MECHANICS
dc.subjectTHERMAL-CONDUCTIVITY
dc.subjectTRANSPORT
dc.titleMagnetization and energy dynamics in spin ladders: Evidence of diffusion in time, frequency, position, and momentum
dc.typejournal article
dc.identifier.doi10.1103/PhysRevB.99.144422
dc.identifier.isiISI:000466385900005
dc.description.volume99
dc.description.issue14
dc.contributor.orcid0000-0001-9860-2146
dc.contributor.orcid0000-0003-0608-0884
dc.contributor.orcid0000-0003-2184-5275
dc.contributor.researcheridC-9541-2013
dc.contributor.researcheridAAS-6749-2020
dc.contributor.researcheridA-5205-2009
dc.contributor.researcheridW-7033-2019
dc.identifier.eissn24699969
dc.publisher.placeONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
dcterms.isPartOf.abbreviationPhys. Rev. B
dcterms.oaStatusGreen Published, hybrid, Green Submitted
crisitem.author.deptFB 04 - Physik-
crisitem.author.deptidfb04-
crisitem.author.orcid0000-0003-0608-0884-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.netidGeJo743-
crisitem.author.netidStRo766-
Zur Kurzanzeige

Seitenaufrufe

5
Letzte Woche
0
Letzter Monat
2
geprüft am 02.06.2024

Google ScholarTM

Prüfen

Altmetric