How nanoscale protein interactions determine the mesoscale dynamic organisation of bacterial outer membrane proteins

DC ElementWertSprache
dc.contributor.authorChavent, Matthieu
dc.contributor.authorDuncan, Anna L.
dc.contributor.authorRassam, Patrice
dc.contributor.authorBirkholz, Oliver
dc.contributor.authorHelie, Jean
dc.contributor.authorReddy, Tyler
dc.contributor.authorBeliaev, Dmitry
dc.contributor.authorHambly, Ben
dc.contributor.authorPiehler, Jacob
dc.contributor.authorKleanthous, Colin
dc.contributor.authorSansom, Mark S. P.
dc.date.accessioned2021-12-23T16:23:31Z-
dc.date.available2021-12-23T16:23:31Z-
dc.date.issued2018
dc.identifier.issn20411723
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/14565-
dc.description.abstractThe spatiotemporal organisation of membranes is often characterised by the formation of large protein clusters. In Escherichia coli, outer membrane protein (OMP) clustering leads to OMP islands, the formation of which underpins OMP turnover and drives organisation across the cell envelope. Modelling how OMP islands form in order to understand their origin and outer membrane behaviour has been confounded by the inherent difficulties of simulating large numbers of OMPs over meaningful timescales. Here, we overcome these problems by training a mesoscale model incorporating thousands of OMPs on coarse-grained molecular dynamics simulations. We achieve simulations over timescales that allow direct comparison to experimental data of OMP behaviour. We show that specific interaction surfaces between OMPs are key to the formation of OMP clusters, that OMP clusters present a mesh of moving barriers that confine newly inserted proteins within islands, and that mesoscale simulations recapitulate the restricted diffusion characteristics of OMPs.
dc.description.sponsorshipBBSRC LoLaUK Research & Innovation (UKRI)Biotechnology and Biological Sciences Research Council (BBSRC) [BB/G02067/2]; European Research CouncilEuropean Research Council (ERC)European Commission [742555-OMPorg]; EPSRC FellowshipUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [EP/M002896/1]; Deutsche ForschungsgemeinschaftGerman Research Foundation (DFG) [SFB 944 P8/Z]; BBSRCUK Research & Innovation (UKRI)Biotechnology and Biological Sciences Research Council (BBSRC) [BB/L002558/1]; Wellcome TrustWellcome TrustEuropean Commission [WT092970MA]; Leverhulme TrustLeverhulme Trust; EPSRCUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC); CNRS ``Mission pour l'interdisciplinarite'' PEPS MPI 2017; Oxford University Goodger and Schorstein scholarship; Canadian Institutes of Health Research (CIHR)Canadian Institutes of Health Research (CIHR); Somerville College, Oxford (Fulford Junior Research Fellowship); BBSRCUK Research & Innovation (UKRI)Biotechnology and Biological Sciences Research Council (BBSRC) [BB/R00126X/1, BB/G020671/2] Funding Source: UKRI; EPSRCUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [EP/L000253/1, EP/J010421/1, EP/M002896/1] Funding Source: UKRI; This work was supported by grants to C.K. (BBSRC LoLa grant BB/G02067/2 and European Research Council Advanced grant 742555-OMPorg), D.B. (EPSRC Fellowship EP/M002896/1), J.P. (Deutsche Forschungsgemeinschaft SFB 944 P8/Z) and M.S.P.S. (BBSRC BB/L002558/1, Wellcome Trust WT092970MA, Leverhulme Trust and EPSRC). M.C. is funded by CNRS ``Mission pour l'interdisciplinarite'' PEPS MPI 2017. P.R. was supported by an Oxford University Goodger and Schorstein scholarship. T.R. acknowledges the Canadian Institutes of Health Research (CIHR) and Somerville College, Oxford (Fulford Junior Research Fellowship). Supercomputer time was provided via EPSRC (ARCHER) and PRACE (MareNostrum, Barcelona).
dc.language.isoen
dc.publisherNATURE PUBLISHING GROUP
dc.relation.ispartofNATURE COMMUNICATIONS
dc.subjectDIFFUSION
dc.subjectEFFICIENT
dc.subjectESCHERICHIA-COLI
dc.subjectFORCE-FIELD
dc.subjectINSERTION
dc.subjectMOLECULAR-DYNAMICS
dc.subjectMOTION
dc.subjectMultidisciplinary Sciences
dc.subjectScience & Technology - Other Topics
dc.subjectSIMULATIONS
dc.subjectSITES
dc.subjectSURFACE
dc.titleHow nanoscale protein interactions determine the mesoscale dynamic organisation of bacterial outer membrane proteins
dc.typejournal article
dc.identifier.doi10.1038/s41467-018-05255-9
dc.identifier.isiISI:000439297100005
dc.description.volume9
dc.contributor.orcid0000-0002-3273-0302
dc.contributor.orcid0000-0002-1725-4360
dc.contributor.orcid0000-0002-8630-0957
dc.contributor.orcid0000-0001-9873-4552
dc.contributor.orcid0000-0001-6551-3219
dc.contributor.orcid0000-0003-4524-4773
dc.contributor.researcheridAAM-9860-2020
dc.contributor.researcheridP-6564-2014
dc.publisher.placeMACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
dcterms.isPartOf.abbreviationNat. Commun.
dcterms.oaStatusgold, Green Published, Green Submitted
crisitem.author.deptFB 05 - Biologie/Chemie-
crisitem.author.deptidfb05-
crisitem.author.orcid0000-0002-2143-2270-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.netidPiJa938-
Zur Kurzanzeige

Google ScholarTM

Prüfen

Altmetric