TSC1 binding to lysosomal PIPs is required for TSC complex translocation and mTORC1 regulation

DC ElementWertSprache
dc.contributor.authorFitzian, Katharina
dc.contributor.authorBruckner, Anne
dc.contributor.authorBrohee, Laura
dc.contributor.authorZech, Reinhard
dc.contributor.authorAntoni, Claudia
dc.contributor.authorKiontke, Stephan
dc.contributor.authorGasper, Raphael
dc.contributor.authorMatos, Anna Livia Linard
dc.contributor.authorBeel, Stephanie
dc.contributor.authorWilhelm, Sabine
dc.contributor.authorGerke, Volker
dc.contributor.authorUngermann, Christian
dc.contributor.authorNellist, Mark
dc.contributor.authorRaunser, Stefan
dc.contributor.authorDemetriades, Constantinos
dc.contributor.authorOeckinghaus, Andrea
dc.contributor.authorKummel, Daniel
dc.date.accessioned2021-12-23T16:23:41Z-
dc.date.available2021-12-23T16:23:41Z-
dc.date.issued2021
dc.identifier.issn10972765
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/14623-
dc.description.abstractThe TSC complex is a critical negative regulator of the small GTPase Rheb and mTORC1 in cellular stress signaling. The TSC2 subunit contains a catalytic GTPase activating protein domain and interacts with multiple regulators, while the precise function of TSC1 is unknown. Here we provide a structural characterization of TSC1 and define three domains: a C-terminal coiled-coil that interacts with TSC2, a central helical domain that mediates TSC1 oligomerization, and an N-terminal HEAT repeat domain that interacts with membrane phosphatidylinositol phosphates (PIPs). TSC1 architecture, oligomerization, and membrane binding are conserved in fungi and humans. We show that lysosomal recruitment of the TSC complex and subsequent inactivation of mTORC1 upon starvation depend on the marker lipid PI3,5P(2), demonstrating a role for lysosomal PIPs in regulating TSC complex and mTORC1 activity via TSC1. Our study thus identifies a vital role of TSC1 in TSC complex function and mTORC1 signaling.
dc.description.sponsorshipiNEXT [6377]; Deutsche Forschungsgemeinschaft (DFG)German Research Foundation (DFG) [GE 514/6-3, SFB 1348A04, SFB 944P11, KU 2531/2, KU 2531/3, SFB 944-P17, OE 531/2]; Innovative Medical Research (IMF) Initiative of the University of Munster [OE121701]; Max Planck SocietyMax Planck SocietyFoundation CELLEX; European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programEuropean Research Council (ERC) [757729]; HZB; We are grateful to Andrea Bolle and Stefanie Kipschull for excellent technical assistance and Prof. Dr. Michael Meisterernst for his support. We thank Stefanie Albrecht for assistance with confocal immunofluorescence microscopy, the MPI-AGE FACS & Imaging Core Facility, Roger Scherres from Wyatt Technologies for help with MALS measurements, and Melissa Graewert for support during SAXS measurement at beamlines P12 at PETRA III, EMBL Hamburg, which received financial support from iNEXT (PID: 6377) . We also thank the staff at beamlines P13 at PETRA III, EMBL Hamburg, and 14.1 at BESSY II, Berlin, for assistance during Xray diffraction data collection and HelmholtzZentrum Berlin fuEuror Materialien und Energie (HZB) for the allocation of synchrotron radiation beamtime, and we acknowledge the financial support by HZB. This work was supported by grants from Deutsche Forschungsgemeinschaft (DFG) to V.G. (GE 514/6-3 and SFB 1348A04) , C.U. (SFB 944P11) , D.K. (KU 2531/2, KU 2531/3, and SFB 944-P17) and A.O. (OE 531/2) and the Innovative Medical Research (IMF) Initiative of the University of Munster (OE121701) to A.O. L.B. acknowledges support from the Boost! program of the Max Planck Society. S.R. is funded by the Max Planck Society. C.D. is funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement 757729) and by the Max Planck Society.
dc.language.isoen
dc.publisherCELL PRESS
dc.relation.ispartofMOLECULAR CELL
dc.subjectBiochemistry & Molecular Biology
dc.subjectCell Biology
dc.subjectCOLOCALIZATION
dc.subjectFUNCTIONAL ASSESSMENT
dc.subjectGTPASE
dc.subjectIDENTIFICATION
dc.subjectKINASE
dc.subjectSMALL-ANGLE SCATTERING
dc.subjectSTRUCTURAL BASIS
dc.subjectSUITE
dc.subjectTUBEROUS SCLEROSIS GENE
dc.subjectVARIANTS
dc.titleTSC1 binding to lysosomal PIPs is required for TSC complex translocation and mTORC1 regulation
dc.typejournal article
dc.identifier.doi10.1016/j.molcel.2021.04.019
dc.identifier.isiISI:000672572800006
dc.description.volume81
dc.description.issue13
dc.description.startpage2705+
dc.contributor.orcid0000-0001-7813-7726
dc.contributor.orcid0000-0001-7174-3504
dc.contributor.orcid0000-0001-8498-1579
dc.contributor.researcheridE-7444-2015
dc.identifier.eissn10974164
dc.publisher.place50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA
dcterms.isPartOf.abbreviationMol. Cell
crisitem.author.deptFB 05 - Biologie/Chemie-
crisitem.author.deptidfb05-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.netidUnCh999-
crisitem.author.netidKuDa343-
Zur Kurzanzeige

Seitenaufrufe

5
Letzte Woche
0
Letzter Monat
0
geprüft am 29.05.2024

Google ScholarTM

Prüfen

Altmetric