Structural, magnetic, and Magneto optical properties of Fe3O4/NiO bilayers on MgO(001)

Autor(en): Wollschläger, J. 
Schemme, T. 
Kuschel, O.
Witziok, M.
Kuschel, T. 
Kuepper, K.
Herausgeber: Look, D.C.
Teherani, F.H.
Rogers, D.J.
Stichwörter: Coercive force; Electrons; Environmental design; exchange bias; Fe3O4; Ferrimagnetism; Interfaces (materials); LEED; Low energy electron diffraction; low-energy electron diffraction; Magnesia; Magnetic and magneto-optical properties; magnetite; magneto optic Kerr effect; Magneto-optic Kerr effect; Magneto-optical Kerr effects; Magnetoelectronics; Magnetooptical properties; MgO; MOKE; Molecular beam epitaxy; NiO; Optical properties; Substrates; Surface and interface structures, Optical Kerr effect; synchrotron radiation; Ultrathin films; X ray diffraction; X ray photoelectron spectroscopy, Exchange bias; x-ray diffraction; x-ray photoelectron spectroscopy; x-ray reflectometrie; XPS; XRD; XRR
Erscheinungsdatum: 2016
Herausgeber: SPIE
Journal: Proceedings of SPIE - The International Society for Optical Engineering
Volumen: 9749
Zusammenfassung: 
Ultrathin magnetite (Fe3O4) films are attractive for applications in the field of spintronics due to their ferrimagnetic behavior with assumed high degree of spin polarized electrons at the Fermi energy. For these applications, it is necessary to form epitactical bilayer structure combining ferrimagnetic magnetite with an antiferromagnetic layer. Therefore, here we study Fe3O4/NiO bilayers on MgO(001) substrates. Bilayers grown by reactive molecular beam epitaxy are stoichiometric and have well-developed surface and interface structures. The NiO layers are laterally pinned to the structure of the MgO(001) substrate while the magnetite films gradually relax. The interfaces show smooth morphologies and the films have very homogeneous film thickness necessary for spintronical applications. The magnetic and magneto optical properties of the Fe3O4/NiO bilayers were probed by the magneto optical Kerr effect. Compared to single Fe3O4 layers on MgO(001), the bilayers show complicated ferrimagnetic behavior depending on the azimuthal direction of the external applied field. The coercive field of the bilayers, however, is increased with the coercive field of single layer Fe3O4/MgO(001) structures making the Fe3O4/NiO bilayers attractive for spintronic applications. © 2016 SPIE.
Beschreibung: 
Conference of Oxide-Based Materials and Devices VII ; Conference Date: 14 February 2016 Through 17 February 2016; Conference Code:122952
ISBN: 9781628419849
ISSN: 0277786X
DOI: 10.1117/12.2219627
Externe URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84981303387&doi=10.1117%2f12.2219627&partnerID=40&md5=d7b025c655877e4f1b5929bb32cecd4e

Zur Langanzeige

Seitenaufrufe

2
Letzte Woche
0
Letzter Monat
0
geprüft am 13.05.2024

Google ScholarTM

Prüfen

Altmetric