Heuristic-driven theory projection: An overview

Autor(en): Schmidt, M.
Krumnack, U. 
Gust, H.
Kühnberger, K.-U. 
Erscheinungsdatum: 2014
Herausgeber: Springer Verlag
Enthalten in: Studies in Computational Intelligence
Band: 548
Startseite: 163
Seitenende: 194
This chapter provides a concise overview of Heuristic-Driven Theory Projection (HDTP), a powerful framework for computing analogies. The chapter attempts to illuminate HDTP from several different perspectives. On the one hand, the syntactic basis ofHDTPis formally specified, in particular, restricted higher-order anti-unification together with a complexity measure is described as the core process to compute a generalization given two input domains (source and target). On the other hand, the substitution-governed alignment and mapping process is analyzed together with the transfer of knowledge from source to target in order to induce hypotheses on the target domain. Additionally, this chapter presents some core ideas concerning the semantics of HDTP as well as the algorithm that computes analogies given two input domains. Finally, some further remarks describe the different (but important) roles heuristics play in this framework. © Springer-Verlag Berlin Heidelberg 2014.
ISSN: 1860949X
DOI: 10.1007/978-3-642-54516-0_7
Externe URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84917723482&doi=10.1007%2f978-3-642-54516-0_7&partnerID=40&md5=65ef6078786b75dc08788ea75890644e

Show full item record

Page view(s)

Last Week
Last month
checked on Jun 16, 2024

Google ScholarTM