The End of the Line: Can Ferredoxin and Ferredoxin NADP(H) Oxidoreductase Determine the Fate of Photosynthetic Electrons?

Autor(en): Goss, Tatjana
Hanke, Guy 
Stichwörter: Biochemistry & Molecular Biology; Bundle sheath; BUNDLE-SHEATH-CELLS; C-4 PHOTOSYNTHESIS; CHLOROPHYLL FLUORESCENCE; CHLOROPLASTIC NAD(P)H DEHYDROGENASE; cyclic electron flow; DIFFERENTIAL EXPRESSION; ferredoxin; FNR; mesophyll; N-TERMINAL DOMAIN; PHOTOSYSTEM-I; SPINACH-CHLOROPLASTS; THYLAKOID MEMBRANES; WATER-WATER CYCLE
Erscheinungsdatum: 2014
Herausgeber: BENTHAM SCIENCE PUBL LTD
Journal: CURRENT PROTEIN & PEPTIDE SCIENCE
Volumen: 15
Ausgabe: 4
Startseite: 385
Seitenende: 393
Zusammenfassung: 
At the end of the linear photosynthetic electron transfer (PET) chain, the small soluble protein ferredoxin (Fd) transfers electrons to Fd: NADP(H) oxidoreductase (FNR), which can then reduce NADP(+) to support C assimilation. In addition to this linear electron flow (LEF), Fd is also thought to mediate electron flow back to the membrane complexes by different cyclic electron flow (CEF) pathways: either antimycin A sensitive, NAD(P) H complex dependent, or through FNR located at the cytochrome b(6)f complex. Both Fd and FNR are present in higher plant genomes as multiple gene copies, and it is now known that specific Fd iso-proteins can promote CEF. In addition, FNR iso-proteins vary in their ability to dynamically interact with thylakoid membrane complexes, and it has been suggested that this may also play a role in CEF. We will highlight work on the different Fd-isoproteins and FNR-membrane association found in the bundle sheath (BSC) and mesophyll (MC) cell chloroplasts of the C4 plant maize. These two cell types perform predominantly CEF and LEF, and the properties and activities of Fd and FNR in the BSC and MC are therefore specialized for CEF and LEF respectively. A diversity of Fd isoproteins and dynamic FNR location has also been recorded in C3 plants, algae and cyanobacteria. This indicates that the principles learned from the extreme electron transport situations in the BSC and MC of maize might be usefully applied to understanding the dynamic transition between these states in other systems.
ISSN: 13892037
DOI: 10.2174/1389203715666140327113733

Zur Langanzeige

Seitenaufrufe

3
Letzte Woche
0
Letzter Monat
0
geprüft am 10.05.2024

Google ScholarTM

Prüfen

Altmetric