Occurrence of benzotriazoles in the rivers Main, Hengstbach, and Hegbach (Germany)

Autor(en): Kiss, Aliz
Fries, Elke
Stichwörter: ADDITIVES; AIRPORT; Anti-icing; Corrosion inhibitors; De-icing; DEICERS; DEICING FLUIDS; Dish washer detergents; Environmental Sciences; Environmental Sciences & Ecology; ETHOXYLATES; Gas chromatography; GROUND-WATER; Hegbach; Hengstbach; Main; Mass spectrometry; Methylated benzotriazoles; MUNICIPAL WASTE-WATER; PIMEPHALES-PROMELAS; Schwarzbach; Solid phase extraction; TOXICITY; Waste water treatment plants
Erscheinungsdatum: 2009
Volumen: 16
Ausgabe: 6
Startseite: 702
Seitenende: 710
Background, aim, and scope Benzotriazoles (BT) as 1H-benzotriazole (1H-BT), 5-methyl-1H-benzotriazole (5Me-BT), and 4-methyl-1H-benzotriazole (4Me-BT) are frequently used as corrosion inhibitors in dish washer detergents, aircraft de-icing/anti-icing fluids (ADAF), automotive antifreeze formulations, brake fluids, fluids for industrial cooling systems, metal-cutting fluids, and in solid cooling lubricants. Discharge of treated municipal waste water and controlled over-runs of combined waste water sewers are potential point sources for BT in rivers. The aim of this monitoring study was to yield an overview on exposure concentrations and loads of BT in the German rivers Main, Hengstbach, and Hegbach. Materials and methods Concentrations of 1H-BT, 5Me-BT, and 4Me-BT were determined in grab samples collected from different sampling points in the rivers Main, Hengstbach, and Hegbach at four different sampling times. Main and Hengstbach rivers were sampled close to Frankfurt International Airport. Both rivers receive domestic waste water effluents. BT were extracted from 2.5 L of river water by solid phase extraction using Bond Elut ppl cartridges (200 mg/3 mL). The extracts were analyzed by gas chromatography/mass spectrometry in full scan mode. Mass flows of BT were calculated by concentrations multiplied by mean daily river flow rates. Median concentrations and mass flows were compared for different rivers. Mass flows were also compared for selected sampling points at different sampling times. Results 1H-BT, 5Me-BT, and 4Me-BT were detected in Main and Hengstbach rivers. 1H-BT and 5Me-BT were also detected in Hegbach River. Concentrations ranged from 38 to 1,474 ng/L for 1H-BT, from 25 to 281 ng/L for 5Me-BT, and from 25 to 952 ng/L for 4Me-BT. Median concentrations of 1H-BT, 5Me-BT, and 4Me-BT were lower in Main than in Hengstbach River. Much higher median mass flows of all BT were calculated for Main than for Hengstbach River. At sampling points P9 (Main) and P5 (Hengstbach) concentrations of 4Me-BT and 5Me-BT increased from March 29, 2008 to May 1, 2008 to June 22, 2008 whereas daily mean river flow rate decreased simultaneously. However, concentration of 1H-BT in Main and Hengstbach River increased from March 29, 2008 to May 1, 2008 and decreased again on June 22, 2008. In the Main River, lowest and highest mass flows for all BT were calculated on June 22, 2008 and May 1, 2008, respectively. In the Hengstbach River lowest and highest mass flows for 1H-BT and 4Me-BT were also calculated on June 22, 2008 and May 1, 2008, respectively. However, mass flows of 5Me-BT in Hengstbach River were rather similar at all three sampling times. In all grab samples, 1H-BT was more abundant than 5Me-BT and 4Me-BT in Main and Hengstbach River, except on June 22, 2008. Ratios of 1H-BT/(5Me-BT+4Me-BT) determined on March 15, 2008, March 29, 2008, and May 1, 2008 varied between 1.6 and 9.0 with amedian value of 1.9 (n=9) whereas on June 22, 2008 the ratios varied between 0.4 and 0.7 with a median value of 0.6 (n=5). Discussion Due to the absence of waste water effluents in the Hegbach River, other input sources as controlled overruns of combined waste water sewers and/or atmospheric deposition of BT must be regarded as possible input sources. Exfiltration of ground water containing BT to Hegbach River must be also regarded, especially when considering the high polarity of BT. Median concentrations of BT in Main River were much lower than in Hengstbach River due to dilution. However, median mass flows were higher in the Main River than in the Hengstbach River. Higher mass flows could be attributed to higher source strengths and/or numerous emissions sources in the Main River. Mass flows determined on June 22, 2008 in Main and Hengstbach rivers probably reflect emissions of BT only from dishwasher detergents since de-icing operations were unlikely at that time. Emissions of BT from dish washer detergents are rather constant without any seasonal variations. Assuming the absence of additional input sources and constant in-stream removal processes, mass flows calculated for all other sampling times must be nearly similar to mass flows for June 22, 2009 as it was only observed for 5Me-BT in Hengstbach River. The higher mass flows for 1H-BT and 4Me-BT in March and May in both rivers could be an indication for temporal variations of emission pattern and/or of in-stream removal processes. 1H-BT/(4Me-BT+5Me-BT) ratios above one in March and May and below one in June could be also an indication for temporal variations of input and/or removal processes. Conclusions 1H-BT, 5Me-BT, and 4Me-BT used as corrosion inhibitors in many applications were detected in the rivers Main, Hengstbach, and Hegbach with relative high temporal and spatial concentration variations. Dilution is a dominant factor that influences exposure concentrations of BT in the studied rivers. We conclude that, especially in smaller rivers (as Hengstbach River), the hydrological situation has to be regarded when predicting exposure concentrations of BT. Characteristic emission strength and in-stream removal processes must be known to relate loads of BT in river water to different sources. The ratio of 1H-BT/(4Me-BT+5Me-BT) could be possibly used for source apportionment. Recommendations and perspectives Time series analyses of BT in composite river water samples collected at two river sites of the Hengstbach/Schwarzbach catchment area, without any waste water effluents in between, are recommended to study in-stream removal of BT. In addition, exposure modeling is recommended of BT, regarding all input sources and in-stream removal processes to predict exposure concentrations of BT in rivers. In order to calibrate and validate the model, additional monitoring data are required.
ISSN: 09441344
DOI: 10.1007/s11356-009-0179-4

Show full item record

Google ScholarTM