Travelling wave solutions to the Kuramoto-Sivashinsky equation

DC FieldValueLanguage
dc.contributor.authorNickel, J.
dc.date.accessioned2021-12-23T15:56:57Z-
dc.date.available2021-12-23T15:56:57Z-
dc.date.issued2007
dc.identifier.issn09600779
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/2626-
dc.description.abstractCombining the approaches given by Baldwin [Baldwin D et al. Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs. J Symbol Comput 2004;37:669-705], Peng [Peng YZ. A polynomial expansion method and new general solitary wave solutions to KS equation. Comm Theor Phys 2003;39:641-2] and by Schurmann [Schurmann HW, Serov VS. Weierstrass' solutions to certain nonlinear wave and evolution equations. Proc progress electromagnetics research symposium, 28-31 March 2004, Pisa. p. 651-4; Schurmann HW. Traveling-wave solutions to the cubic-quintic nonlinear Schrodinger equation. Phys Rev E 1996;54:4312-20] leads to a method for finding exact travelling wave solutions of nonlinear wave and evolution equations (NLWEE). The first idea is to generalize ansatze given by Baldwin and Peng to find elliptic solutions of NLWEEs. Secondly, conditions used by Schurmann to find physical (real and bounded) solutions and to discriminate between periodic and solitary wave solutions are used. The method is shown in detail by evaluating new solutions of the Kuramoto-Sivashinsky equation. (c) 2006 Elsevier Ltd. All rights reserved.
dc.language.isoen
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.relation.ispartofCHAOS SOLITONS & FRACTALS
dc.subjectEXPANSION METHOD
dc.subjectMathematics
dc.subjectMathematics, Interdisciplinary Applications
dc.subjectNONLINEAR DIFFERENTIAL-EQUATIONS
dc.subjectPhysics
dc.subjectPhysics, Mathematical
dc.subjectPhysics, Multidisciplinary
dc.titleTravelling wave solutions to the Kuramoto-Sivashinsky equation
dc.typejournal article
dc.identifier.doi10.1016/j.chaos.2006.01.087
dc.identifier.isiISI:000246609700031
dc.description.volume33
dc.description.issue4
dc.description.startpage1376
dc.description.endpage1382
dc.publisher.placeTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
dcterms.isPartOf.abbreviationChaos Solitons Fractals
Show simple item record

Google ScholarTM

Check

Altmetric