A dimension-related metric on the lattice of knowledge spaces

Autor(en): Suck, R
Stichwörter: BUILD; EXPERT; Mathematical Methods In Social Sciences; Mathematics; Mathematics, Interdisciplinary Applications; ORDERED SETS; Psychology; Psychology, Mathematical; Social Sciences, Mathematical Methods
Erscheinungsdatum: 1999
Herausgeber: ACADEMIC PRESS INC
Journal: JOURNAL OF MATHEMATICAL PSYCHOLOGY
Volumen: 43
Ausgabe: 3
Startseite: 394
Seitenende: 409
Zusammenfassung: 
The set of all knowledge spaces on a given set of items or questions is investigated with respect to order theoretic and metrical properties. It is argued that a generalization of properties of the subspaces of a finite dimensional Euclidean vector space yields the material for defining a metric which satisfies certain requirements. The fact that the lattice of knowledge spaces is not modular is the reason for most of the difficulties. It turns out that a Hausdorff metric based on the Hamming distance satisfies the postulated conditions, (C) 1999 Academic Press.
ISSN: 00222496
DOI: 10.1006/jmps.1998.1229

Show full item record

Page view(s)

1
Last Week
0
Last month
1
checked on Mar 2, 2024

Google ScholarTM

Check

Altmetric