BASIC CONSTRUCTIONS IN THE K-THEORY OF HOMOTOPY RING SPACES

DC FieldValueLanguage
dc.contributor.authorSCHWANZL, R
dc.contributor.authorVOGT, RM
dc.date.accessioned2021-12-23T15:57:02Z-
dc.date.available2021-12-23T15:57:02Z-
dc.date.issued1994
dc.identifier.issn00029947
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/2676-
dc.description.abstractUsing the language of category theory and universal algebra we formalize the passage from the permutative category of finitely generated free R-modules to the algebraic K-theory KR of R and thus make it applicable to homotopy ring spaces. As applications we construct a Waldhausen type of algebraic K-theory for arbitrary homotopy ring spaces, show its equivalence with constructions of May and Steiner prove its Morita invariance and show that the algebraic K-theory KX of an E(infinity) ring X is itself an E(infinity) ring. Finally we investigate the monomial map Q(BX+*) --> KX.
dc.language.isoen
dc.publisherAMER MATHEMATICAL SOC
dc.relation.ispartofTRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
dc.subjectCATEGORIES
dc.subjectGAMMA-SPACES
dc.subjectMathematics
dc.titleBASIC CONSTRUCTIONS IN THE K-THEORY OF HOMOTOPY RING SPACES
dc.typejournal article
dc.identifier.doi10.2307/2154572
dc.identifier.isiISI:A1994MX74500004
dc.description.volume341
dc.description.issue2
dc.description.startpage549
dc.description.endpage584
dc.identifier.eissn10886850
dc.publisher.place201 CHARLES ST, PROVIDENCE, RI 02940-2213 USA
dcterms.isPartOf.abbreviationTrans. Am. Math. Soc.
Show simple item record

Google ScholarTM

Check

Altmetric