Generalised Poincar, series and embedded resolution of curves

DC FieldValueLanguage
dc.contributor.authorMoyano-Fernandez, Julio Jose
dc.date.accessioned2021-12-23T15:57:26Z-
dc.date.available2021-12-23T15:57:26Z-
dc.date.issued2011
dc.identifier.issn00269255
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/2925-
dc.description.abstractThe purpose of this paper is to extend the notions of generalised Poincar, series and divisorial generalised Poincar, series (of motivic nature) introduced by Campillo, Delgado and Gusein-Zade for complex curve singularities to curves defined over perfect fields, as well as to express them in terms of an embedded resolution of curves.
dc.description.sponsorshipSpanish Government Ministerio de Educacion [MTM2007-64704]; European UnionEuropean Commission; regional Government Junta de Castilla y LeonJunta de Castilla y Leon [VA065A07]; German Academic Exchange Service (DAAD)-La CaixaDeutscher Akademischer Austausch Dienst (DAAD); German Research Foundation (DFG)German Research Foundation (DFG); Supported partially by the grant of the Spanish Government Ministerio de Educacion MTM2007-64704, in cooperation with the European Union in the framework of the founds ``FEDER'', by the grant of the regional Government Junta de Castilla y Leon VA065A07, by the grant of the German Academic Exchange Service (DAAD)-La Caixa, and by the German Research Foundation (DFG). The author is thankful to Prof. Dr. Karlheinz Kiyek and Prof. Dr. Felix Delgado for nice conversations and useful remarks. He is also thankful to the Universities of Paderborn and Valladolid for kind hospitality.
dc.language.isoen
dc.publisherSPRINGER WIEN
dc.relation.ispartofMONATSHEFTE FUR MATHEMATIK
dc.subjectCurve singularity
dc.subjectDivisorial valuation
dc.subjectGROTHENDIECK RING
dc.subjectMathematics
dc.subjectMotivic integration
dc.subjectPerfect field
dc.subjectPoincare series
dc.subjectSINGULARITY
dc.subjectVARIETIES
dc.titleGeneralised Poincar, series and embedded resolution of curves
dc.typejournal article
dc.identifier.doi10.1007/s00605-010-0259-z
dc.identifier.isiISI:000295176000006
dc.description.volume164
dc.description.issue2
dc.description.startpage201
dc.description.endpage224
dc.contributor.researcheridA-4612-2012
dc.contributor.researcheridABG-8112-2020
dc.identifier.eissn14365081
dc.publisher.placeSACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA
dcterms.isPartOf.abbreviationMon.heft. Math.
dcterms.oaStatusGreen Submitted
Show simple item record

Google ScholarTM

Check

Altmetric