High Performance Poly(viologen)-Graphene Nanocomposite Battery Materials with Puff Paste Architecture

DC ElementWertSprache
dc.contributor.authorBeladi-Mousavi, Seyyed Mohsen
dc.contributor.authorSadaf, Shamaila
dc.contributor.authorMahmood, Arsalan Mado
dc.contributor.authorWalder, Lorenz
dc.date.accessioned2021-12-23T15:57:38Z-
dc.date.available2021-12-23T15:57:38Z-
dc.date.issued2017
dc.identifier.issn19360851
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/3043-
dc.description.abstractFour linear poly(viologens) (PV1, PV2: phenylic, PV3: benzylic, and PV4: aliphatic) in tight molecular contact with reduced graphene oxide (rGO), that is, PV@rGO, were prepared and used as anodic battery materials. These composites show exceptionally high, areal, volumetric, and current densities, for example, PV1@rGO composites (with 15 wt % rGO, corresponding to 137 mAh g(-1)) show 13.3 mAh cm(-2) at 460 pm and 288 mAh cm(-3) with 98% Coulombic efficiency at current densities up to 1000 A g(-1), better than any reported organic materials. These remarkable performances are based on (i) molecular self-assembling of individual GO sheets yielding colloidal PV@GO and (ii) efficient GO/rGO transformation electrocatalyzed by PVs. Ion breathing during charging/discharging was studied by electrochemical quartz crystal microbalance and electrochemical atomic force microscopy revealing an absolute reversible and strongly anisotropic thickness oscillation of PV1@rGO at a right angle to the macroscopic current collector. It is proposed that such stress-free breathing is the key property for good cyclability of the battery material. The anisotropy is related to a puff paste architecture of rGO sheets parallel to the macroscopic current collector. A thin graphite sheet electrode with an areal capacity of 1.23 mAh cm(-2) is stable over 200 bending cycles, making the material applicable for wearable electronics. The polymer acts as a lubricant between the rGO layers if shearing forces are active.
dc.language.isoen
dc.publisherAMER CHEMICAL SOC
dc.relation.ispartofACS NANO
dc.subjectACTIVE MATERIALS
dc.subjectAQUEOUS-ELECTROLYTE
dc.subjectbattery
dc.subjectChemistry
dc.subjectChemistry, Multidisciplinary
dc.subjectChemistry, Physical
dc.subjectcomposites
dc.subjectelectrochemical AFM
dc.subjectENERGY-STORAGE
dc.subjecteQCM
dc.subjectgraphene
dc.subjectgraphene oxide
dc.subjectLITHIUM-ION BATTERIES
dc.subjectMaterials Science
dc.subjectMaterials Science, Multidisciplinary
dc.subjectNanoscience & Nanotechnology
dc.subjectORGANIC ELECTRODE
dc.subjectPOLYIMIDE ANODE
dc.subjectQUARTZ-CRYSTAL MICROBALANCE
dc.subjectRADICAL POLYMER-CATHODE
dc.subjectRECHARGEABLE DEVICE
dc.subjectScience & Technology - Other Topics
dc.subjectSTORAGE MATERIAL
dc.subjectviologen
dc.titleHigh Performance Poly(viologen)-Graphene Nanocomposite Battery Materials with Puff Paste Architecture
dc.typejournal article
dc.identifier.doi10.1021/acsnano.7b02310
dc.identifier.isiISI:000411918200020
dc.description.volume11
dc.description.issue9
dc.description.startpage8730
dc.description.endpage8740
dc.contributor.orcid0000-0002-5497-034X
dc.contributor.orcid0000-0003-2861-0348
dc.contributor.researcheridAAM-6820-2020
dc.contributor.researcheridK-8708-2018
dc.identifier.eissn1936086X
dc.publisher.place1155 16TH ST, NW, WASHINGTON, DC 20036 USA
dcterms.isPartOf.abbreviationACS Nano
crisitem.author.deptInstitut für Chemie neuer Materialien-
crisitem.author.deptidinstitute11-
crisitem.author.orcid0000-0002-5497-034X-
crisitem.author.parentorgFB 05 - Biologie/Chemie-
crisitem.author.grandparentorgUniversität Osnabrück-
crisitem.author.netidWaLo966-
Zur Kurzanzeige

Seitenaufrufe

1
Letzte Woche
0
Letzter Monat
1
geprüft am 07.06.2024

Google ScholarTM

Prüfen

Altmetric