Refined method to study the posttranslational regulation of alternative oxidases from Arabidopsis thaliana in vitro

Autor(en): Selinski, Jennifer
Hartmann, Andreas
Hoefler, Saskia
Deckers-Hebestreit, Gabriele 
Scheibe, Renate 
Stichwörter: CYANIDE-RESISTANT; CYTOCHROME-OXIDASE; ESCHERICHIA-COLI; EXPRESSION; GENES; INSIGHTS; OXIDOREDUCTASE; Plant Sciences; PLANT-MITOCHONDRIA; PROTEIN; RESPIRATION
Erscheinungsdatum: 2016
Herausgeber: WILEY
Journal: PHYSIOLOGIA PLANTARUM
Volumen: 157
Ausgabe: 3, SI
Startseite: 264
Seitenende: 279
Zusammenfassung: 
In isolated membranes, posttranslational regulation of quinol oxidase activities can only be determined simultaneously for all oxidases-quinol oxidases as well as cytochrome c oxidases-because of their identical localization. In this study, a refined method to determine the specific activity of a single quinol oxidase is exemplarily described for the alternative oxidase (AOX) isoform AOX1A from Arabidopsis thaliana and its corresponding mutants, using the respiratory chain of an Escherichia coli cytochrome bo and bd-I oxidase double mutant as a source to provide electrons necessary for O-2 reduction via quinol oxidases. A highly sensitive and reproducible experimental set-up with prolonged linear time intervals of up to 60s is presented, which enables the determination of constant activity rates in E. coli membrane vesicles enriched in the quinol oxidase of interest by heterologous expression, using a Clark-type oxygen electrode to continuously follow O-2 consumption. For the calculation of specific quinol oxidase activity, activity rates were correlated with quantitative signal intensity determinations of AOX1A present in a membrane-bound state by immunoblot analyses, simultaneously enabling normalization of specific activities between different AOX proteins. In summary, the method presented is a powerful tool to study specific activities of individual quinol oxidases, like the different AOX isoforms, and their corresponding mutants upon modification by addition of effectors/inhibitors, and thus to characterize their individual mode of posttranslational regulation in a membranous environment.
ISSN: 00319317
DOI: 10.1111/ppl.12418

Show full item record

Page view(s)

1
Last Week
0
Last month
0
checked on Feb 23, 2024

Google ScholarTM

Check

Altmetric