Inter-subunit rotation and elastic power transmission in F0F1-ATPase

Autor(en): Junge, W 
Panke, O
Cherepanov, DA
Gumbiowski, K
Muller, M
Engelbrecht, S
Stichwörter: actin; ATP synthase; Biochemistry & Molecular Biology; Biophysics; Cell Biology; elastic transmission; ENERGY TRANSDUCTION; ESCHERICHIA-COLI F1-ATPASE; F-ATPASE; F0F1; F0F1 ATP SYNTHASE; GAMMA-SUBUNIT; H+/ATP COUPLING RATIO; motor protein; ROTARY MOTOR; SINGLE ACTIN-FILAMENTS; THERMAL FLUCTUATIONS; TORSIONAL RIGIDITY
Erscheinungsdatum: 2001
Herausgeber: ELSEVIER SCIENCE BV
Journal: FEBS LETTERS
Volumen: 504
Ausgabe: 3, SI
Startseite: 152
Seitenende: 160
Zusammenfassung: 
ATP synthase (F-ATPase) produces ATP at the expense of ion-motive force or vice versa. It is composed from two motor/generators, the ATPase (F-1) and the ion translocator (F-0), which both are rotary steppers. They are mechanically coupled by 360 degrees rotary motion of subunits against each other. The rotor, subunits gamma epsilonc(10-14), moves against the stator, (alpha beta)(3)delta ab(2.) The enzyme copes with symmetry mismatch (C-3 versus C10-14) between its two motors, and it operates robustly in chimeric constructs or with drastically modified subunits. We scrutinized whether an elastic power transmission accounts for these properties. We used the curvature of fluorescent actin filaments, attached to the rotating c ring, as a spring balance (flexural rigidity of 8.10(-26) N m(2)) to gauge the angular profile of the output torque at F0 during ATP hydrolysis by F-1. The large average output torque (56 pN nm) proved the absence of any slip. Angular variations of the torque were small, so that the output free energy of the loaded enzyme decayed almost linearly over the angular reaction coordinate. Considering the three-fold stepping and high activation barrier ( > 40 kJ/mol) of the driving motor (Fl) itself, the rather constant output torque seen by F0 implied a soft elastic power transmission between F-1 and F-0. It is considered as essential, not only for the robust operation of this ubiquitous enzyme under symmetry mismatch, but also for a high turnover rate under load of the two counteracting and stepping motors/generators. (C) 2001 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
Beschreibung: 
Conference on Structure, Dynamics and Function of Proteins in Biological Membranes, MONTE VERITA, SWITZERLAND, MAR 13-17, 2001
ISSN: 00145793
DOI: 10.1016/S0014-5793(01)02745-4

Show full item record

Page view(s)

37
Last Week
0
Last month
0
checked on Feb 22, 2024

Google ScholarTM

Check

Altmetric