Spectral analysis of fourth order differential operators I

DC FieldValueLanguage
dc.contributor.authorBehncke, H
dc.date.accessioned2021-12-23T15:57:57Z-
dc.date.available2021-12-23T15:57:57Z-
dc.date.issued2006
dc.identifier.issn0025584X
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/3231-
dc.description.abstractWe study the spectral theory of differential operators of the form tau y = w(-1)[(ry `')'' - (py')' qy - i((my `')' (my')'' - ny' - (ny)')] on L-w(2) (0,infinity). By means of asymptotic integration, estimates for the eigenfunctions and M-matrix are derived. Since the M-function is the Stieltjes transform of the spectral measure, spectral properties of tau are directly related to the asymptotics of the eigenfunctions. The method of asymptotic integration, however, excludes coefficients which are too oscillatory or whose derivatives decay too slowly. Consequently there is no singular continuous spectrum in all our cases. This was found earlier for Sturm-Liouville operators, for which the WKB method provides a good approximation. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
dc.language.isoen
dc.publisherWILEY-V C H VERLAG GMBH
dc.relation.ispartofMATHEMATISCHE NACHRICHTEN
dc.subjectabsolutely continuous spectrum
dc.subjectASYMPTOTIC INTEGRATION
dc.subjectCOEFFICIENTS
dc.subjectdifferential operators
dc.subjectEQUATIONS
dc.subjectMathematics
dc.subjectPOTENTIALS
dc.subjectSCHRODINGER-OPERATORS
dc.subjectSYSTEMS
dc.titleSpectral analysis of fourth order differential operators I
dc.typejournal article
dc.identifier.doi10.1002/mana.200310345
dc.identifier.isiISI:000234973900003
dc.description.volume279
dc.description.issue1-2
dc.description.startpage58
dc.description.endpage72
dc.publisher.placePO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
dcterms.isPartOf.abbreviationMath. Nachr.
Show simple item record

Google ScholarTM

Check

Altmetric