THE GENERAL SPIN TRIANGLE

Autor(en): Schmidt, Heinz-Juergen
Stichwörter: Heisenberg model; high temperature expansion; Physics; Physics, Applied; Physics, Condensed Matter; Physics, Mathematical; tridiagonal matrices
Erscheinungsdatum: 2013
Herausgeber: WORLD SCIENTIFIC PUBL CO PTE LTD
Journal: INTERNATIONAL JOURNAL OF MODERN PHYSICS B
Volumen: 27
Ausgabe: 16
Zusammenfassung: 
We consider the Heisenberg spin triangle with general coupling coefficients and general spin quantum number s. The corresponding classical system is completely integrable. In the quantum case the eigenvalue problem can be reduced to that of tridiagonal matrices in at most 2s+ 1 dimensions. The corresponding energy spectrum exhibits what we will call spectral symmetries due to the underlying permutational symmetry of the considered class of Hamiltonians. As an application we explicitly calculate six classes of universal polynomials that occur in the high temperature expansion of spin triangles and more general spin systems.
ISSN: 02179792
DOI: 10.1142/S0217979213500641

Show full item record

Google ScholarTM

Check

Altmetric