A network involving Rho-type GTPases, a paxillin and a formin homologue regulates spore length and spore wall integrity in the filamentous fungus Ashbya gossypii

Autor(en): Lickfeld, Manuela
Schmitz, Hans-Peter 
Stichwörter: 2-HYBRID; Biochemistry & Molecular Biology; CHITOSAN; Microbiology; MORPHOGENESIS; MUTAGENESIS; PLASMIDS; PROTEIN; SELECTION; SPORULATION; TRANSFORMATION; YEAST SACCHAROMYCES-CEREVISIAE
Erscheinungsdatum: 2012
Herausgeber: WILEY
Journal: MOLECULAR MICROBIOLOGY
Volumen: 85
Ausgabe: 3
Startseite: 574
Seitenende: 593
Zusammenfassung: 
Fungi produce spores that allow for their dispersal and survival under harsh environmental conditions. These spores can have an astonishing variety of shapes and sizes. Using the highly polar, needle-shaped spores of the ascomycete Ashbya gossypii as a model, we demonstrated that spores produced by this organism are not simple continuous structures but rather consist of three different segments that correlate with the accumulation of different materials: a rigid tip segment, a more fragile main spore-compartment and a solid tail segment. Little is currently known about the regulatory mechanisms that control the formation of the characteristic spore morphologies. We tested a variety of mutant strains for their spore phenotypes, including spore size, shape and wall defects. The mutants that we identified as displaying such phenotypes are all known for their roles in the regulation of hyphal tip growth, including the formin protein AgBni1, the homologous Rho-type GTPases AgRho1a and AgRho1b and the scaffold protein AgPxl1. Our observations suggest that these proteins form a signalling network controlling spore length by regulating the formation of actin structures.
ISSN: 0950382X
DOI: 10.1111/j.1365-2958.2012.08128.x

Show full item record

Page view(s)

2
Last Week
0
Last month
1
checked on Feb 26, 2024

Google ScholarTM

Check

Altmetric