An ATP-driven potassium pump promotes long-term survival of Halobacterium salinarum within salt crystals

Autor(en): Kixmueller, Dorthe
Greie, Joerg-Christian
Stichwörter: ANALOGS; ECOLOGY; Environmental Sciences; Environmental Sciences & Ecology; EVAPORITES; EXTREMELY HALOPHILIC ARCHAEA; FLUID INCLUSIONS; K+-UPTAKE; Microbiology; SP-NOV.; STRAIN; SYSTEM; TRANSPORT
Erscheinungsdatum: 2012
Herausgeber: WILEY
Journal: ENVIRONMENTAL MICROBIOLOGY REPORTS
Volumen: 4
Ausgabe: 2
Startseite: 234
Seitenende: 241
Zusammenfassung: 
Many extremely halophilic archaea belonging to the Halobacteriales have remarkable longevity. They are even known to persist for millions of years within fluid inclusions of salt crystals. However, the key systems responsible for this remarkable ability and the underlying physiological mechanisms have not yet been deciphered. This study revealed that the ATP-dependent K+ uptake system KdpFABC of Halobacterium salinarum is essential for survival under desiccation and salt crystal inclusion and, thus, can be identified as at least one of these systems in this organism. The presence of the kdp genes promoted survival of H. salinarum entombed in halite, compared with cells in which these genes were deleted. Expression of the kdp operon was found to be induced already under desiccating conditions without halite entombment. The morphology of cells included in halite resembled that of cells grown under potassium limitation. Therefore, a steady potassium supply, even under unfavourable energetic conditions, plays a key role in long-term survival and desiccation tolerance.
ISSN: 17582229
DOI: 10.1111/j.1758-2229.2012.00326.x

Show full item record

Page view(s)

1
Last Week
0
Last month
0
checked on Feb 22, 2024

Google ScholarTM

Check

Altmetric