On the Gorensteinness of broken circuit complexes and Orlik-Terao ideals

DC FieldValueLanguage
dc.contributor.authorVan Le, Dinh
dc.date.accessioned2021-12-23T15:59:58Z-
dc.date.available2021-12-23T15:59:58Z-
dc.date.issued2014
dc.identifier.issn00973165
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/4263-
dc.description.abstractIt is proved that the broken circuit complex of an ordered matroid is Gorenstein if and only if it is a complete intersection. Several characterizations for a matroid that admits such an order are then given, with particular interest in the h-vector of broken circuit complexes of the matroid. As an application, we prove that the Orlik Terao algebra of a hyperplane arrangement is Gorenstein if and only if it is a complete intersection. Interestingly, our result shows that the complete intersection property (and hence the Gorensteinness as well) of the Orlik Terao algebra can be determined from the last two nonzero entries of its h-Vector. (C) 2013 Elsevier Inc. All rights reserved.
dc.language.isoen
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.relation.ispartofJOURNAL OF COMBINATORIAL THEORY SERIES A
dc.subjectALGEBRAS
dc.subjectBroken circuit complex
dc.subjectComplete intersection
dc.subjectGorenstein
dc.subjectHyperplane arrangement
dc.subjectMathematics
dc.subjectMatroid
dc.subjectOrlik-Terao algebra
dc.titleOn the Gorensteinness of broken circuit complexes and Orlik-Terao ideals
dc.typejournal article
dc.identifier.doi10.1016/j.jcta.2013.12.007
dc.identifier.isiISI:000330749100013
dc.description.volume123
dc.description.issue1
dc.description.startpage169
dc.description.endpage185
dc.identifier.eissn10960899
dc.publisher.place525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
dcterms.isPartOf.abbreviationJ. Comb. Theory Ser. A
dcterms.oaStatusGreen Submitted, hybrid
Show simple item record

Google ScholarTM

Check

Altmetric