The structure of rating scales

DC FieldValueLanguage
dc.contributor.authorSuck, Reinhard
dc.date.accessioned2021-12-23T16:00:27Z-
dc.date.available2021-12-23T16:00:27Z-
dc.date.issued2018
dc.identifier.issn00222496
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/4408-
dc.description.abstractThe structure of the set of all possible rating scales is investigated. It is shown that by a natural addition of rating scales the set is a commutative semigroup with neutral element. From this operation a partial order can be defined which turns out to a lattice order. This lattice is shown to be distributive. In the next step two possibilities-closely related to the preceding development-are analyzed to endow this structure with a metric. The semigroup operation is shown to be continuous in the respective topologies. With the help of one of these metrics the question of the scale type of rating scales is discussed by giving the concept of admissible transformations an extended meaning. (C) 2018 Elsevier Inc. All rights reserved.
dc.language.isoen
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.relation.ispartofJOURNAL OF MATHEMATICAL PSYCHOLOGY
dc.subjectDistributive lattice
dc.subjectMathematical Methods In Social Sciences
dc.subjectMathematics
dc.subjectMathematics, Interdisciplinary Applications
dc.subjectMetric space
dc.subjectPsychology
dc.subjectPsychology, Mathematical
dc.subjectRating scales
dc.subjectSemigroup
dc.subjectSocial Sciences, Mathematical Methods
dc.titleThe structure of rating scales
dc.typejournal article
dc.identifier.doi10.1016/j.jmp.2018.10.004
dc.identifier.isiISI:000453341900006
dc.description.volume87
dc.description.startpage98
dc.description.endpage107
dc.identifier.eissn10960880
dc.publisher.place525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
dcterms.isPartOf.abbreviationJ. Math. Psychol.
Show simple item record

Google ScholarTM

Check

Altmetric