Hilbert depth of graded modules over polynomial rings in two variables

Autor(en): Moyano-Fernandez, Julio Jose
Uliczka, Jan
Stichwörter: Commutative graded ring; Finitely generated module; Hilbert depth; Hilbert series; Mathematics; Numerical semigroup
Erscheinungsdatum: 2013
Herausgeber: ACADEMIC PRESS INC ELSEVIER SCIENCE
Enthalten in: JOURNAL OF ALGEBRA
Band: 373
Startseite: 130
Seitenende: 152
Zusammenfassung: 
In this article we mainly consider the positively Z-graded polynomial ring R = F[X, Y] over an arbitrary field F and Hilbert series of finitely generated graded R-modules. The central result is an arithmetic criterion for such a series to be the Hilbert series of some R-module of positive depth. In the generic case, that is deg(X) and deg(Y) being coprime, this criterion can be formulated in terms of the numerical semigroup generated by those degrees. (C) 2012 Elsevier Inc. All rights reserved.
ISSN: 00218693
DOI: 10.1016/j.jalgebra.2012.09.026

Show full item record

Page view(s)

1
Last Week
0
Last month
0
checked on Sep 9, 2024

Google ScholarTM

Check

Altmetric