Universal bounds on spectral measures of one-dimensional Schrodinger operators

DC FieldValueLanguage
dc.contributor.authorRemling, C
dc.date.accessioned2021-12-23T16:01:24Z-
dc.date.available2021-12-23T16:01:24Z-
dc.date.issued2003
dc.identifier.issn00754102
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/4938-
dc.description.abstractLet H = -d(2)/dx(2) V(x) be a Schrodinger operator on L-2(0, infinity) with spectral measure rho, and suppose that the potential V is known on an initial interval [0, N]. We show that this information yields strong restrictions on rho(I) for intervals I subset of R. More precisely, we prove upper and lower bounds on rho(I). The upper bound is finite for any I that is bounded above and the lower bound is positive if the interior of I contains at least two eigenvalues of the operator on L-2(0, N). These results are developments of classical work of Chebyshev and Markov on orthogonal polynomials.
dc.description.sponsorshipDivision Of Mathematical SciencesNational Science Foundation (NSF)NSF - Directorate for Mathematical & Physical Sciences (MPS) Funding Source: National Science Foundation
dc.language.isoen
dc.publisherWALTER DE GRUYTER & CO
dc.relation.ispartofJOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK
dc.subjectMathematics
dc.titleUniversal bounds on spectral measures of one-dimensional Schrodinger operators
dc.typejournal article
dc.identifier.isiISI:000186555100005
dc.description.volume564
dc.description.startpage105
dc.description.endpage117
dc.publisher.placeGENTHINER STRASSE 13, D-10785 BERLIN, GERMANY
dcterms.isPartOf.abbreviationJ. Reine Angew. Math.
dcterms.oaStatusGreen Submitted
Show simple item record

Google ScholarTM

Check