Broken circuit complexes and hyperplane arrangements

Autor(en): Dinh Van Le
Roemer, Tim 
Stichwörter: ALGEBRAS; Broken circuit complex; COHOMOLOGY; Complete intersection; FREE RESOLUTIONS; Hyperplane arrangement; Mathematics; Matroid; MONOMIAL IDEALS; Orlik-Terao algebra; Resolution
Erscheinungsdatum: 2013
Herausgeber: SPRINGER
Journal: JOURNAL OF ALGEBRAIC COMBINATORICS
Volumen: 38
Ausgabe: 4
Startseite: 989
Seitenende: 1016
Zusammenfassung: 
We study Stanley-Reisner ideals of broken circuit complexes and characterize those ones admitting linear resolutions or being complete intersections. These results will then be used to characterize hyperplane arrangements whose Orlik-Terao ideal has the same properties. As an application, we improve a result of Wilf on upper bounds for the coefficients of the chromatic polynomial of a maximal planar graph. We also show that for a matroid with a complete intersection broken circuit complex, the supersolvability of the matroid is equivalent to the Koszulness of its Orlik-Solomon algebra.
ISSN: 09259899
DOI: 10.1007/s10801-013-0435-z

Show full item record

Google ScholarTM

Check

Altmetric