Direct and inverse spectral theory of one-dimensional Schrodinger operators with measures

Autor(en): Ben Amor, A
Remling, C
Stichwörter: Mathematics; Schrodinger operator; spectral measure
Erscheinungsdatum: 2005
Herausgeber: BIRKHAUSER VERLAG AG
Journal: INTEGRAL EQUATIONS AND OPERATOR THEORY
Volumen: 52
Ausgabe: 3
Startseite: 395
Seitenende: 417
Zusammenfassung: 
We present a direct and rather elementary method for defining and analyzing one-dimensional Schrodinger operators H = -d(2)/dx(2) mu with measures as potentials. The basic idea is to let the (suitably interpreted) equation -f'' mu f = zf take center stage. We show that the basic results from direct and inverse spectral theory then carry over to Schrodinger operators with measures.
ISSN: 0378620X
DOI: 10.1007/s00020-004-1352-2

Show full item record

Google ScholarTM

Check

Altmetric