Direct and inverse spectral theory of one-dimensional Schrodinger operators with measures

DC FieldValueLanguage
dc.contributor.authorBen Amor, A
dc.contributor.authorRemling, C
dc.date.accessioned2021-12-23T16:02:26Z-
dc.date.available2021-12-23T16:02:26Z-
dc.date.issued2005
dc.identifier.issn0378620X
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/5415-
dc.description.abstractWe present a direct and rather elementary method for defining and analyzing one-dimensional Schrodinger operators H = -d(2)/dx(2) mu with measures as potentials. The basic idea is to let the (suitably interpreted) equation -f'' mu f = zf take center stage. We show that the basic results from direct and inverse spectral theory then carry over to Schrodinger operators with measures.
dc.language.isoen
dc.publisherBIRKHAUSER VERLAG AG
dc.relation.ispartofINTEGRAL EQUATIONS AND OPERATOR THEORY
dc.subjectMathematics
dc.subjectSchrodinger operator
dc.subjectspectral measure
dc.titleDirect and inverse spectral theory of one-dimensional Schrodinger operators with measures
dc.typejournal article
dc.identifier.doi10.1007/s00020-004-1352-2
dc.identifier.isiISI:000231028500003
dc.description.volume52
dc.description.issue3
dc.description.startpage395
dc.description.endpage417
dc.publisher.placeVIADUKSTRASSE 40-44, PO BOX 133, CH-4010 BASEL, SWITZERLAND
dcterms.isPartOf.abbreviationIntegr. Equ. Oper. Theory
dcterms.oaStatusGreen Submitted
Show simple item record

Google ScholarTM

Check

Altmetric