Microspectroscopic SERS detection of interleukin-6 with rationally designed gold/silver nanoshells

Autor(en): Wang, Yuling
Salehi, Mohammad
Schuetz, Max
Rudi, Katharina
Schluecker, Sebastian
Stichwörter: CANCER MARKERS; Chemistry; Chemistry, Analytical; CYTOKINES; ENHANCED RAMAN-SCATTERING; IMMUNOASSAY; LABELS; METAANALYSIS; NANOPARTICLES; NANOSTRUCTURES; PROBES; RESONANCE
Erscheinungsdatum: 2013
Herausgeber: ROYAL SOC CHEMISTRY
Journal: ANALYST
Volumen: 138
Ausgabe: 6
Startseite: 1764
Seitenende: 1771
Zusammenfassung: 
Rationally designed gold/silver nanoshells (Au/Ag-NS) with plasmon resonances optimized for red laser excitation in order to minimize autofluorescence from clinical samples exhibit scattering cross-sections, which are ca. one order of magnitude larger compared with solid quasi-spherical gold nanoparticles (Au-NPs) of the same size. Hydrophilic stabilization and sterical accessibility for subsequent bioconjugation of Au/Ag-NS is achieved by coating their surface with a self-assembled monolayer (SAM) of rationally designed Raman reporter molecules comprising terminal mono-and tri-ethylene glycol (EG) spacers, respectively. The stability of the hydrophilically stabilized metal colloid was tested under different conditions. In contrast to metal colloids coated with a SAM without terminal EG spacers, the hydrophilically stabilized SERS particles do not aggregate under physiologically relevant conditions, i.e., buffer solutions with high ionic strength. Using these rationally designed SERS particles in conjunction with a microspectroscopic acquisition scheme, a sandwich immunoassay for the sensitive detection of interleukin-6 (IL-6) was developed. Several control experiments demonstrate the high specificity of the assay towards IL-6, with a lowest detectable concentration of ca. 1 pg mL(-1). The signal strength of the Au/Ag-NS is at least one order of magnitude higher compared with hydrophilically stabilized, non-aggregated solid quasi-spherical Au-NPs of the same size.
ISSN: 00032654
DOI: 10.1039/c3an36610c

Show full item record

Page view(s)

1
Last Week
0
Last month
0
checked on Feb 22, 2024

Google ScholarTM

Check

Altmetric