Tight closure

DC FieldValueLanguage
dc.contributor.authorBruns, W
dc.date.accessioned2021-12-23T16:02:46Z-
dc.date.available2021-12-23T16:02:46Z-
dc.date.issued1996
dc.identifier.issn02730979
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/5602-
dc.description.abstractThe theory of tight closure was created by Mel Hochster and Craig Huneke about ten years ago. Assisted by numerous contributions of others, they have continuously developed the theory since then. `Tight closure' can now be regarded as a synonym for `characteristic p methods in commutative algebra'. It ties several strands of commutative algebra and algebraic geometry together: invariant theory, rational singularities, the Briancon-Skoda theorem, the `homological conjectures', big Cohen-Macaulay modules and algebras, and various other topics.
dc.language.isoen
dc.publisherAMER MATHEMATICAL SOC
dc.relation.ispartofBULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY
dc.subjectBRIANCON-SKODA
dc.subjectBriancon-Skoda theorem
dc.subjectcharacteristic p methods
dc.subjectCOHEN-MACAULAY ALGEBRAS
dc.subjecthomological conjectures
dc.subjectIDEALS
dc.subjectinvariant theory
dc.subjectLOCAL-RINGS
dc.subjectMathematics
dc.subjectphantom homology
dc.subjectPHANTOM PROJECTIVE DIMENSION
dc.subjectrational singularities
dc.subjectREDUCTIVE GROUPS
dc.subjectTHEOREM
dc.subjecttight closure
dc.titleTight closure
dc.typejournal article
dc.identifier.doi10.1090/S0273-0979-96-00691-X
dc.identifier.isiISI:A1996VM94900002
dc.description.volume33
dc.description.issue4
dc.description.startpage447
dc.description.endpage457
dc.publisher.place201 CHARLES ST, PROVIDENCE, RI 02940-2213
dcterms.isPartOf.abbreviationBull. Amer. Math. Soc.
dcterms.oaStatusgold
crisitem.author.deptFB 06 - Mathematik/Informatik-
crisitem.author.deptidfb06-
crisitem.author.parentorgUniversität Osnabrück-
crisitem.author.netidBrWi827-
Show simple item record

Page view(s)

1
Last Week
0
Last month
0
checked on Apr 19, 2024

Google ScholarTM

Check

Altmetric