The spectrum of differential operators with almost constant coefficients II

DC FieldValueLanguage
dc.contributor.authorBehncke, H
dc.date.accessioned2021-12-23T16:03:19Z-
dc.date.available2021-12-23T16:03:19Z-
dc.date.issued2002
dc.identifier.issn03770427
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/5918-
dc.description.abstractThe absolutely continuous spectrum of differential operators of the form Ly = w(-1)Sigma(k=0)(n)(-1)(k)(p(k)y((k)))((k)) on L-2([9, infinity), w) is determined. With p(n)(x), w(x) > 0 the coefficients p(k) are assumed to satisfy (p) over tilde (k) (x) = (p(k) y(2k)w(-1))(x) --> c(k), y = (w (.) p(n)(-1))(1/2n). If the coefficients satisfy some additional smoothness and decay conditions, the absolutely continuous part H-ac of any self-adjoint extension of L is unitarily equivalent to the operator of multiplication by P(x) = Sigma(0)(n) c(k)x(2k) on L-2([0, infinity)). Several extensions of this result as well as examples are shown. (C) 2002 Elsevier Science B.V. All rights reserved.
dc.language.isoen
dc.publisherELSEVIER SCIENCE BV
dc.relation.ispartofJOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
dc.subjectEQUATIONS
dc.subjectMathematics
dc.subjectMathematics, Applied
dc.subjectPOTENTIALS
dc.subjectSCHRODINGER-OPERATORS
dc.subjectSYSTEMS
dc.titleThe spectrum of differential operators with almost constant coefficients II
dc.typejournal article
dc.identifier.doi10.1016/S0377-0427(02)00586-1
dc.identifier.isiISI:000179021100019
dc.description.volume148
dc.description.issue1
dc.description.startpage287
dc.description.endpage305
dc.publisher.placePO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
dcterms.isPartOf.abbreviationJ. Comput. Appl. Math.
crisitem.author.netidBeHo025-
Show simple item record

Page view(s)

2
Last Week
0
Last month
0
checked on Apr 18, 2024

Google ScholarTM

Check

Altmetric