The Caratheodory pseudodistance and positive linear operators

DC FieldValueLanguage
dc.contributor.authorMeyer, R
dc.date.accessioned2021-12-23T16:03:22Z-
dc.date.available2021-12-23T16:03:22Z-
dc.date.issued1997
dc.identifier.issn0129167X
dc.identifier.urihttps://osnascholar.ub.uni-osnabrueck.de/handle/unios/5945-
dc.description.abstractWe give a new elementary proof of Lempert's theorem, which states that for convex domains the Caratheodory pseudodistance coincides with the Lempert function and thus with the Kobayashi pseudodistance. Moreover, we prove the product property of the Caratheodory pseudodistance. Our methods are functional analytic and work also in the more general setting of uniform algebras.
dc.language.isoen
dc.publisherWORLD SCIENTIFIC PUBL CO PTE LTD
dc.relation.ispartofINTERNATIONAL JOURNAL OF MATHEMATICS
dc.subjectCaratheodory pseudodistance
dc.subjectCaratheodory-Reiffen pseudometric
dc.subjectLempert's theorem
dc.subjectMathematics
dc.subjectproduct property
dc.titleThe Caratheodory pseudodistance and positive linear operators
dc.typejournal article
dc.identifier.doi10.1142/S0129167X97000408
dc.identifier.isiISI:A1997YA50100004
dc.description.volume8
dc.description.issue6
dc.description.startpage809
dc.description.endpage824
dc.publisher.placeJOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 9128, SINGAPORE
dcterms.isPartOf.abbreviationInt. J. Math.
Show simple item record

Page view(s)

2
Last Week
0
Last month
0
checked on Apr 18, 2024

Google ScholarTM

Check

Altmetric